0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Significance of the 98th Amino Acid in GP2a for Porcine Reproductive and Respiratory Syndrome Virus Adaptation in Marc-145 Cells

      , , , , , , ,
      Viruses
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the pig industry. Marc-145 cells are widely used for PRRSV isolation, vaccine production, and investigations into virus biological characteristics. Despite their significance in PRRSV research, Marc-145 cells struggle to isolate specific strains of the North American virus genotype (PRRSV-2). The involvement of viral GP2a, GP2b, and GP3 in this phenomenon has been noted. However, the vital amino acids have not yet been identified. In this study, we increased the number of blind passages and successfully isolated two strains that were previously difficult to isolate with Marc-145 cells. Both strains carried an amino acid substitution in GP2a, specifically phenylalanine to leucine at the 98th amino acid position. Through a phylogenetic and epidemiologic analysis of 32 strains, those that were not amenable to isolation widely exhibited this mutation. Then, by using the PRRSV reverse genetics system, IFA, and Western blotting, we identified the mutation that could affect the tropism of PRRSV-2 for Marc-145 cells. Furthermore, an animal experiment was conducted. Through comparisons of clinical signs, mortality rates, and viral load in the organs and sera, we found that mutation did not affect the pathogenicity of PRRSV-2. In conclusion, our study firmly establishes the 98th amino acid in GP2a as a key determinant of PRRSV-2 tropism for Marc-145 cells.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees

          Abstract Evolview is an interactive tree visualization tool designed to help researchers in visualizing phylogenetic trees and in annotating these with additional information. It offers the user with a platform to upload trees in most common tree formats, such as Newick/Phylip, Nexus, Nhx and PhyloXML, and provides a range of visualization options, using fifteen types of custom annotation datasets. The new version of Evolview was designed to provide simple tree uploads, manipulation and viewing options with additional annotation types. The ‘dataset system’ used for visualizing tree information has evolved substantially from the previous version, and the user can draw on a wide range of additional example visualizations. Developments since the last public release include a complete redesign of the user interface, new annotation dataset types, additional tree visualization styles, full-text search of the documentation, and some backend updates. The project management aspect of Evolview was also updated, with a unified approach to tree and project management and sharing. Evolview is freely available at: https://www.evolgenius.info/evolview/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China

            To the Editor: Porcine reproductive and respiratory syndrome (PRRS), which is characterized by reproductive failure in sows and respiratory disease in pigs of all ages, is a viral disease with serious economic consequences for the global pork industry ( 1 ). PRRS virus (PRRSV), the causative agent of this disease, was identified in Europe in 1991 and the United States in 1992 ( 2 , 3 ). PRRSV is an enveloped, positive-strand RNA virus of the family Arteriviridae. This virus is divided into European genotype 1 and North American genotype 2. Emerging novel PRRSV strains have caused many outbreaks of severe PRRS ( 4 – 7 ). We report emergence of a novel PRRSV (NADC30-like) in China that is genetically similar to the NADC30 strain isolated in the United States in 2008 ( 8 ). During August–December 2014, severe outbreaks of PRRS were observed on 7 intensive pig farms in Beijing, Tianjing, Shanxi, Henan, and Zhejing, China. Pregnant sows had abortions and stillbirth and piglets had respiratory disorders (case-fatality rate 30%–50%). A total of 58 tissue samples from stillborn piglets, serum samples from diseased sows and piglets, and lungs and lymph nodes of dead piglets were tested for viral RNA by using reverse transcription PCR and primers specific for PRRSV open reading frame (ORF) 7, which encodes nucleocapsid protein, as described ( 9 ). Viral RNA was detected in 63.8% (4/7, 7/13, 5/5, 4/4, 5/10, 6/6, and 6/13 for the 7 farms, respectively) of samples tested. All virus-positive lung samples were then used to amplify the entire ORF5 gene, which encodes major envelope glycoprotein 5 and is one of the most variable regions in the PRRSV genome. Amplified fragments were sequenced to analyze variation of PRRSV as described ( 10 ). Comparative analyses of sequences showed that amplified ORF5s of viruses isolated on an individual farm had 100% identities and amplified ORF5s of viruses from 7 farms had 89.7%–97.7% nucleotide identities (88.6%–98.0% for deduced amino acids) with each other (GenBank accession nos. KP861625–31) and higher nucleotide (92.2%–97.0%) and amino acid (91.5%–96.5%) identities with NADC30. The ≈10% amino acid divergence among ORF5s from the 7 farms suggests possible variation of NADC30 during its transmission. These viruses had lower nucleotide (84.9%–87.6%) and amino acid (84.1%–88.6%) identities with representative PRRSV strains from China, including CH1a, HB-1(sh)/2002, HB-2(sh)/2002, and JXwn06, and lower nucleotide (85.1%–86.7%) and amino acid (82.1%–86.1%) identities with VR-2332. A strain of PRRSV (CHsx1401) was isolated from a lung sample by using porcine pulmonary alveolar macrophages. Third-passage viral cultures were used for genomic sequencing as described ( 9 ). Genomic fragment amplification was conducted by using reverse transcription PCR and 14 pairs of primers ( 10 ), which had minor modifications made on the basis of the genomic sequence of NADC30 available in GenBank. Comparative analyses of all coding regions and their deduced amino acid sequences of the virus were performed with representative PRRSV strains from China and the United States. Similar to the genome of NADC30, the genome of CHsx1401 (GenBank accession no. KP861625) was 15,020 nt, excluding its poly A tail. Amino acid alignment of the nonstructural protein 2 (NSP2) highly variable region of CHsx1401 with those other strains showed that this virus had amino acid deletions that were identical to that in NADC30 ( 8 ) and MN184 isolated in the United States ( 4 ). These deletions were identified as a 111-aa deletion at position 323–433, a 1-aa deletion at position 481, and a 19-aa deletion at position 533–551 (Technical Appendix Figure) when compared with sequence of prototype strain VR-2332. Two recent virus isolates from China (HENAN-XINX and HENAN-HEB), whose sequences were submitted to GenBank in 2013, also had these deletions. Genome sequence of CHsx1401 had 95.7% nucleotide identity with NADC30, 93.0% identity with HENAN-XINX, and 93.2% identity with HENAN-HEB, but only 85.8% identity with VR-2332 and 83.8% identity with JXwn06, a highly pathogenic strain from China. Phylogenetic analysis of the whole genome of PRRSV was performed by using a distance-based neighbor-joining method with 1,000 bootstrap replicates in MEGA6 (http://www.megasoftware.net/). CHsx1401 was shown to be genetically more closely related to NADC30 and clustered into a specific branch (Figure). Figure Phylogenetic analysis of whole genomes of porcine reproductive and respiratory syndrome virus (PRRSV) CHsx1401 (triangle) (GenBank accession no. KP861625); representative prototype strain VR-2332 (U87392); isolates BJ-4 (AF331831), CH-1a (AY032626), HB-1(sh)/2002 (AY150312), and HB-2(sh)/2002 (AY262352) from China; highly pathogenic strains JXA1 (EF112445), JXwn06 (EF641008), and HUN4 (EF635006); strains MN184A (DQ176019), MN184B (DQ176020), MN184C (EF488739), and NADC30 (JN654459) from the United States; and recent strains HENAN-HEB (KJ143621) and HENAN-XINX (KF611905) from China. Prototype Lelystad virus (M96262) was used as the outgroup. The phylogenetic tree was constructed by using the distance-based neighbor-joining method with 1,000 bootstrap replicates in MEGA6 (http://www.megasoftware.net/). Numbers along branches are bootstrap values. Scale bar indicates nucleotide substitutions per site. Additional comparative analyses of viral protein amino acid sequences of CHsx1401 with those of NADC30, MN184A, MN184B, MN184C, JXwn06, and VR-2332 indicated that CHsx1401 had higher similarity with NADC30 (91.2%–99.1%) than with MN184 serial strains (78%–98.2%) and lower similarity with HP-PRRSV (JXwn06) from China and VR-2332 strains, except for NSP1α and NSP11 (Technical Appendix Table). These data also indicate that CHsx1401 is genetically similar to NADC30. Recent widespread outbreaks of PPRS in China were associated with a novel NADC30-like strain of PPRSV. Whole genomic analysis showed that the strain differed from previously identified PRRSV strains in China, but had an overall genetic similarity and a unique deletion in the NSP2-coding region that was identical to that of NADC30, which originated in the United States. We propose that the NADC30 strain was introduced into China in recent years by importing of breeding pigs and has since undergone mutations, resulting in variant viruses. Technical Appendix. Additional information on NADC30-like strain of porcine reproductive and respiratory syndrome virus, China.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An attenuated live vaccine based on highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) protects piglets against HP-PRRS.

              Porcine infections with highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) cause significant morbidity and mortality and currently there are no effective vaccines for disease prevention. An attenuated strain, HuN4-F112, was obtained by passaging the HP-PRRSV HuN4 on Marc-145 cells (112th-passage). PRRSV-free pigs were inoculated intramuscularly with HuN4-F112 (10(2.0), 10(3.0), 10(4.0), 10(5.0) and 10(6.0) TCID(50) for groups 1-5, respectively). The groups 3-5 could resist the lethal challenge and did not show any obvious changes in body temperature nor clinical signs throughout the experiment, the pathological lesions were milder and the gained weight at a greater rate (P (196)RWGRL/P(200)), as a result the monoclonal antibody could not recognize the HuN4-F112 any more. These results suggested that the HuN4-F112 could protect piglets from lethal challenge and might be a candidate vaccine against the HP-PRRSV.
                Bookmark

                Author and article information

                Journal
                VIRUBR
                Viruses
                Viruses
                MDPI AG
                1999-4915
                May 2024
                April 30 2024
                : 16
                : 5
                : 711
                Article
                10.3390/v16050711
                40b79a35-f733-46af-b971-7033c3bb8bd7
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article