Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Fibrotic scar formation contributes to the axon growth-inhibitory environment that forms following spinal cord injury (SCI). We recently demonstrated that depletion of hematogenous macrophages led to a reduction in fibrotic scar formation and increased axon growth after SCI. These changes were associated with decreased TNFSF13 (a proliferation inducing ligand (APRIL)) expression, but the role of APRIL in fibrotic scar formation after SCI has not been directly investigated. Thus, the goal of this study was to determine the role of APRIL in fibrotic scar formation after SCI.

          Methods

          APRIL knockout and wild-type mice received contusive SCI and were assessed for inflammatory cytokine/chemokine expression, leukocyte infiltration, fibrotic scar formation, axon growth, and cell proliferation.

          Results

          Expression of APRIL and its receptor BCMA is increased following SCI, and genetic deletion of APRIL led to reduced fibrotic scar formation and increased axon growth. However, the fibrotic scar reduction in APRIL KO mice was not a result of changes in fibroblast or astrocyte proliferation. Rather, APRIL knockout mice displayed reduced TNFα and CCL2 expression and less macrophage and B cell infiltration at the injury site.

          Conclusions

          Our data indicate that APRIL contributes to fibrotic scar formation after SCI by mediating the inflammatory response.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          A Soluble Form of B Cell Maturation Antigen, a Receptor for the Tumor Necrosis Factor Family Member April, Inhibits Tumor Cell Growth

          A proliferation-inducing ligand (APRIL) is a ligand of the tumor necrosis factor (TNF) family that stimulates tumor cell growth in vitro and in vivo. Expression of APRIL is highly upregulated in many tumors including colon and prostate carcinomas. Here we identify B cell maturation antigen (BCMA) and transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI), two predicted members of the TNF receptor family, as receptors for APRIL. APRIL binds BCMA with higher affinity than TACI. A soluble form of BCMA, which inhibits the proliferative activity of APRIL in vitro, decreases tumor cell proliferation in nude mice. Growth of HT29 colon carcinoma cells is blocked when mice are treated once per week with the soluble receptor. These results suggest an important role for APRIL in tumorigenesis and point towards a novel anticancer strategy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study.

            Injury to the spinal cord induces a complex cascade of cellular reactions at the local lesion area: secondary cell death and inflammatory reactions as well as scar and cavity formation take place. In order to investigate the molecular features underlying this local wounding response and to determine their pathophysiological implications, we studied the expression pattern of pro-inflammatory and chemoattractant cytokines in an experimental spinal cord injury model in mouse. We show by in situ hybridization that transcripts for the pro-inflammatory cytokines TNF alpha and IL-1 as well as the chemokines MIP-1alpha and MIP-1beta are upregulated within the first hour following injury. In this early phase, the expression of the pro-inflammatory cytokines is restricted to cells in the surroundings of the lesion area probably resident CNS cells. While TNF alpha is expressed in a very narrow time window, IL-1 can be detected in a second phase in a subset of polymorphonuclear granulocytes which immigrate into the spinal cord around 6 h. Message for the chemokines MIP-1alpha and beta is expressed in a generalized way in the grey matter of the entire spinal cord around 24 h and gets again restricted to the cellular infiltrate at the lesion site at 4 days following injury. Interestingly, our data suggest that resident CNS cells, most probably microglial cells, and not peripheral inflammatory cells, are the main source for cytokine and chemokine mRNAs. The defined cytokine pattern observed indicates that the inflammatory events upon lesioning the CNS are tightly controlled. The very early expression of pro-inflammatory cytokine and chemokine messages may represent an important element of the recruitment of inflammatory cells. Additional pathophysiological consequences of the specific cytokine pattern observed remain to be determined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glial cell loss, proliferation and replacement in the contused murine spinal cord.

              Studies in the rat have shown that contusive spinal cord injury (SCI) results in devastating pathology, including significant loss of mature oligodendrocytes and astrocytes even in spared white matter. Subsequently, there is increased proliferation of endogenous NG2(+) cells, postulated to contribute to replacement of mature glia chronically, which is important for functional recovery. Studies of mechanisms that stimulate endogenous progenitor cells would be facilitated by using mouse models with naturally occurring and genetically engineered mutations. To determine whether the murine response is similar to that in the rat, we performed contusive SCI on adult female C57Bl/6 mice at the T8-9 level. Animals received bromodeoxyuridine injections in the first week following injury and were killed at 1, 3, 4, 7 or 28 days postinjury (DPI). The overall loss of macroglia and the temporal-spatial response of NG2(+) cells after SCI in the (C57Bl/6) mouse was very similar to that in the (Sprague-Dawley) rat. By 24 h after SCI nearly half of the macroglia in spared ventral white matter had been lost. Cell proliferation was increased at 1-7 DPI, peaking at 3-4 DPI. Dividing cells included NG2(+) cells and Cd11b(+) macrophages and microglia. Furthermore, cells dividing in the first week expressed markers of mature glia at 28 DPI. The similarities in endogenous progenitor cell response to SCI in the mouse and rat suggest that this is a fundamental injury response, and that transgenic mouse models may be used to further probe how this cellular response to SCI might be enhanced to improve recovery after SCI.
                Bookmark

                Author and article information

                Contributors
                LFreer@med.miami.edu
                A.Hackett@med.miami.edu
                MBunge@med.miami.edu
                305-243-2646 , JLee22@med.miami.edu
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                20 April 2016
                20 April 2016
                2016
                : 13
                : 87
                Affiliations
                [ ]Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136 USA
                [ ]Department of Cell Biology, University of Miami School of Medicine, Miami, FL 33136 USA
                [ ]Department of Neurology, University of Miami School of Medicine, Miami, FL 33136 USA
                [ ]University of Miami School of Medicine, 1095 NW 14th Terrace, LPLC 4-19, Miami, FL 33136 USA
                Article
                552
                10.1186/s12974-016-0552-4
                4839088
                27098833
                40841b7a-93b5-4a91-80d5-3d2254ffe550
                © Funk et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 April 2016
                : 14 April 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000065, National Institute of Neurological Disorders and Stroke;
                Award ID: R21NS082835
                Award ID: R01NS009923
                Award Recipient :
                Categories
                Short Report
                Custom metadata
                © The Author(s) 2016

                Neurosciences
                tnfsf13,glial scar,cell proliferation,fibrosis,baff,taci,bcma,baff-r
                Neurosciences
                tnfsf13, glial scar, cell proliferation, fibrosis, baff, taci, bcma, baff-r

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content105

                Cited by14

                Most referenced authors322