1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Study on the Optimization of the Coil Defect Detection Model Based on Deep Learning

      , , , , ,
      Applied Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With increasing interest in smart factories, considerable attention has been paid to the development of deep-learning-based quality inspection systems. Deep-learning-based quality inspection helps productivity improvements by solving the limitations of existing quality inspection methods (e.g., an inspector’s human errors, various defects, and so on). In this study, we propose an optimized YOLO (You Only Look Once) v5-based model for inspecting small coils. Performance improvement techniques (model structure modification, model scaling, pruning) are applied for model optimization. Furthermore, the model is prepared by adding data applied with histogram equalization to improve model performance. Compared with the base model, the proposed YOLOv5 model takes nearly half the time for coil inspection and improves the accuracy of inspection by up to approximately 1.6%, thereby enhancing the reliability and productivity of the final products.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: not found
          • Article: not found

          Image Quality Assessment: From Error Visibility to Structural Similarity

            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Feature Pyramid Networks for Object Detection

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

              Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224 × 224) input image. This requirement is "artificial" and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with another pooling strategy, "spatial pyramid pooling", to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. Pyramid pooling is also robust to object deformations. With these advantages, SPP-net should in general improve all CNN-based image classification methods. On the ImageNet 2012 dataset, we demonstrate that SPP-net boosts the accuracy of a variety of CNN architectures despite their different designs. On the Pascal VOC 2007 and Caltech101 datasets, SPP-net achieves state-of-the-art classification results using a single full-image representation and no fine-tuning. The power of SPP-net is also significant in object detection. Using SPP-net, we compute the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test images, our method is 24-102 × faster than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC 2007. In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, our methods rank #2 in object detection and #3 in image classification among all 38 teams. This manuscript also introduces the improvement made for this competition.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                April 2023
                April 21 2023
                : 13
                : 8
                : 5200
                Article
                10.3390/app13085200
                405199da-35ef-4fa1-bef0-c2c3a3c07c95
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article