24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Viewing a needle pricking a hand that you perceive as yours enhances unpleasantness of pain.

      Brain
      Adult, Electric Stimulation, Emotions, physiology, Female, Humans, Male, Needles, Pain, psychology, Pain Measurement, Pain Perception, Pain Threshold, Questionnaires, Visual Perception

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          "Don't look and it won't hurt" is commonly heard advice when receiving an injection, which implies that observing needle pricks enhances pain perception. Throughout our lives, we repeatedly learn that sharp objects cause pain when penetrating our skin, but situational expectations, like information given by the clinician prior to an injection, may also influence how viewing needle pricks affects forthcoming pain. How both previous experiences and acute situational expectations related to viewing needle pricks modulate pain perception is unknown. We presented participants with video clips of a hand perceived as their own being either pricked by a needle or touched by a Q-tip, while concurrently applying painful or nonpainful electrical stimuli. Intensity and unpleasantness ratings, as well as pupil dilation responses, were monitored. Effects of situational expectations about the strength of electrical stimuli were investigated by manipulating the contingency between clips and electrical stimuli across experimental blocks. Participants were explicitly informed about the contingency. Intensity ratings of electrical stimuli were higher when a clip was associated with expectation of painful compared to nonpainful stimuli, suggesting that situational expectations about forthcoming pain bias perceived intensity. Unpleasantness ratings and pupil dilation responses were higher when participants viewed a needle prick, compared to when they viewed a Q-tip touch, suggesting that previous experiences with viewing needle pricks primarily act upon perceived unpleasantness. Thus, remote painful experiences with viewing needle pricks, together with information given prior to an injection, differentially shape the impact of viewing a needle prick on pain perception. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          The subjective experience of pain: where expectations become reality.

          Our subjective sensory experiences are thought to be heavily shaped by interactions between expectations and incoming sensory information. However, the neural mechanisms supporting these interactions remain poorly understood. By using combined psychophysical and functional MRI techniques, brain activation related to the intensity of expected pain and experienced pain was characterized. As the magnitude of expected pain increased, activation increased in the thalamus, insula, prefrontal cortex, anterior cingulate cortex (ACC) and other brain regions. Pain-intensity-related brain activation was identified in a widely distributed set of brain regions but overlapped partially with expectation-related activation in regions, including the anterior insula and ACC. When expected pain was manipulated, expectations of decreased pain powerfully reduced both the subjective experience of pain and activation of pain-related brain regions, such as the primary somatosensory cortex, insular cortex, and ACC. These results confirm that a mental representation of an impending sensory event can significantly shape neural processes that underlie the formulation of the actual sensory experience and provide insight as to how positive expectations diminish the severity of chronic disease states.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brain mediators of predictive cue effects on perceived pain.

            Information about upcoming pain strongly influences pain experience in experimental and clinical settings, but little is known about the brain mechanisms that link expectation and experience. To identify the pathways by which informational cues influence perception, analyses must jointly consider both the effects of cues on brain responses and the relationship between brain responses and changes in reported experience. Our task and analysis strategy were designed to test these relationships. Auditory cues elicited expectations for barely painful or highly painful thermal stimulation, and we assessed how cues influenced human subjects' pain reports and brain responses to matched levels of noxious heat using functional magnetic resonance imaging. We used multilevel mediation analysis to identify brain regions that (1) are modulated by predictive cues, (2) predict trial-to-trial variations in pain reports, and (3) formally mediate the relationship between cues and reported pain. Cues influenced heat-evoked responses in most canonical pain-processing regions, including both medial and lateral pain pathways. Effects on several regions correlated with pretask expectations, suggesting that expectancy plays a prominent role. A subset of pain-processing regions, including anterior cingulate cortex, anterior insula, and thalamus, formally mediated cue effects on pain. Effects on these regions were in turn mediated by cue-evoked anticipatory activity in the medial orbitofrontal cortex (OFC) and ventral striatum, areas not previously directly implicated in nociception. These results suggest that activity in pain-processing regions reflects a combination of nociceptive input and top-down information related to expectations, and that anticipatory processes in OFC and striatum may play a key role in modulating pain processing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Empathy for pain and touch in the human somatosensory cortex.

              Although feeling pain and touch has long been considered inherently private, recent neuroimaging and neurophysiological studies hint at the social implications of this experience. Here we used somatosensory-evoked potentials (SEPs) to investigate whether mere observation of painful and tactile stimuli delivered to a model would modulate neural activity in the somatic system of an onlooker. Viewing video clips showing pain and tactile stimuli delivered to others, respectively, increased and decreased the amplitude of the P45 SEP component that reflects the activity of the primary somatosensory cortex (S1). These modulations correlated with the intensity but not with the unpleasantness of the pain and touch ascribed to the model or the aversion induced in the onlooker by the video clips. Thus, modulation of S1 activity contingent upon observation of others' pain and touch may reflect the mapping of sensory qualities of observed painful and tactile stimuli. Results indicate that the S1 is not only involved in the actual perception of pain and touch but also plays an important role in extracting somatic features from social interactions.
                Bookmark

                Author and article information

                Journal
                22520059
                10.1016/j.pain.2012.02.010

                Chemistry
                Adult,Electric Stimulation,Emotions,physiology,Female,Humans,Male,Needles,Pain,psychology,Pain Measurement,Pain Perception,Pain Threshold,Questionnaires,Visual Perception

                Comments

                Comment on this article