13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dysfunctional peroxisomal lipid metabolisms and their ocular manifestations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retina is rich in lipids and dyslipidemia causes retinal dysfunction and eye diseases. In retina, lipids are not only important membrane component in cells and organelles but also fuel substrates for energy production. However, our current knowledge of lipid processing in the retina are very limited. Peroxisomes play a critical role in lipid homeostasis and genetic disorders with peroxisomal dysfunction have different types of ocular complications. In this review, we focus on the role of peroxisomes in lipid metabolism, including degradation and detoxification of very-long-chain fatty acids, branched-chain fatty acids, dicarboxylic acids, reactive oxygen/nitrogen species, glyoxylate, and amino acids, as well as biosynthesis of docosahexaenoic acid, plasmalogen and bile acids. We also discuss the potential contributions of peroxisomal pathways to eye health and summarize the reported cases of ocular symptoms in patients with peroxisomal disorders, corresponding to each disrupted peroxisomal pathway. We also review the cross-talk between peroxisomes and other organelles such as lysosomes, endoplasmic reticulum and mitochondria.

          Related collections

          Most cited references291

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide and peroxynitrite in health and disease.

          The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular mechanisms and physiological consequences of redox-dependent signalling.

            Reactive oxygen species (ROS), which were originally characterized in terms of their harmful effects on cells and invading microorganisms, are increasingly implicated in various cell fate decisions and signal transduction pathways. The mechanism involved in ROS-dependent signalling involves the reversible oxidation and reduction of specific amino acids, with crucial reactive Cys residues being the most frequent target. In this Review, we discuss the sources of ROS within cells and what is known regarding how intracellular oxidant levels are regulated. We further discuss the recent observations that reduction-oxidation (redox)-dependent regulation has a crucial role in an ever-widening range of biological activities - from immune function to stem cell self-renewal, and from tumorigenesis to ageing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species, cellular redox systems, and apoptosis.

              Reactive oxygen species (ROS) are products of normal metabolism and xenobiotic exposure, and depending on their concentration, ROS can be beneficial or harmful to cells and tissues. At physiological low levels, ROS function as "redox messengers" in intracellular signaling and regulation, whereas excess ROS induce oxidative modification of cellular macromolecules, inhibit protein function, and promote cell death. Additionally, various redox systems, such as the glutathione, thioredoxin, and pyridine nucleotide redox couples, participate in cell signaling and modulation of cell function, including apoptotic cell death. Cell apoptosis is initiated by extracellular and intracellular signals via two main pathways, the death receptor- and the mitochondria-mediated pathways. Various pathologies can result from oxidative stress-induced apoptotic signaling that is consequent to ROS increases and/or antioxidant decreases, disruption of intracellular redox homeostasis, and irreversible oxidative modifications of lipid, protein, or DNA. In this review, we focus on several key aspects of ROS and redox mechanisms in apoptotic signaling and highlight the gaps in knowledge and potential avenues for further investigation. A full understanding of the redox control of apoptotic initiation and execution could underpin the development of therapeutic interventions targeted at oxidative stress-associated disorders. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                07 September 2022
                2022
                : 10
                : 982564
                Affiliations
                [1] 1 Department of Nutritional Sciences , Temerty Faculty of Medicine , University of Toronto , Toronto, ON, Canada
                [2] 2 Post-Graduate Medical Education , University of Toronto , Toronto, ON, Canada
                [3] 3 Division of Clinical and Metabolic Genetics , the Hospital for Sick Children , University of Toronto , Toronto, ON, Canada
                [4] 4 The Genetics Program , North York General Hospital , University of Toronto , Toronto, ON, Canada
                [5] 5 Department of Ophthalmology , Boston Children’s Hospital , Harvard Medical School , Boston, MA, United States
                Author notes

                Edited by: Rajalekshmy Shyam, Indiana University Bloomington, United States

                Reviewed by: Yukio Fujiki, Kyushu University Graduate School, Japan

                Maki Kamoshita, Osaka University, Japan

                Francesca Di Cara, Dalhousie University, Canada

                Anyuan He, Anhui Medical University, China

                *Correspondence: Zhongjie Fu, zhongjie.fu@ 123456childrens.harvard.edu
                [ † ]

                These authors have contributed equally to this work and share first authorship

                This article was submitted to Molecular and Cellular Pathology, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                982564
                10.3389/fcell.2022.982564
                9524157
                4015abeb-4df5-4d3d-a4c7-e72b723b2722
                Copyright © 2022 Chen, Shao and Fu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 June 2022
                : 17 August 2022
                Funding
                Funded by: National Eye Institute , doi 10.13039/100000053;
                Funded by: Massachusetts Lions Eye Research Fund , doi 10.13039/100007745;
                Categories
                Cell and Developmental Biology
                Review

                peroxisome,retinal lipids,fatty acid oxidation,retinal dystrophy,retinopathy

                Comments

                Comment on this article