11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Roles of Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Biostimulants for Agricultural Production Systems

      , ,
      Plants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The application of biostimulants has been proven to be an advantageous tool and an appropriate form of management towards the effective use of natural resources, food security, and the beneficial effects on plant growth and yield. Plant-growth-promoting rhizobacteria (PGPR) are microbes connected with plant roots that can increase plant growth by different methods such as producing plant hormones and molecules to improve plant growth or providing increased mineral nutrition. They can colonize all ecological niches of roots to all stages of crop development, and they can affect plant growth and development directly by modulating plant hormone levels and enhancing nutrient acquisition such as of potassium, phosphorus, nitrogen, and essential minerals, or indirectly via reducing the inhibitory impacts of different pathogens in the forms of biocontrol parameters. Many plant-associated species such as Pseudomonas, Acinetobacter, Streptomyces, Serratia, Arthrobacter, and Rhodococcus can increase plant growth by improving plant disease resistance, synthesizing growth-stimulating plant hormones, and suppressing pathogenic microorganisms. The application of biostimulants is both an environmentally friendly practice and a promising method that can enhance the sustainability of horticultural and agricultural production systems as well as promote the quantity and quality of foods. They can also reduce the global dependence on hazardous agricultural chemicals. Science Direct, Google Scholar, Springer Link, CAB Direct, Scopus, Springer Link, Taylor and Francis, Web of Science, and Wiley Online Library were checked, and the search was conducted on all manuscript sections in accordance with the terms Acinetobacter, Arthrobacter, Enterobacter, Ochrobactrum, Pseudomonas, Rhodococcus, Serratia, Streptomyces, Biostimulants, Plant growth promoting rhizobactera, and Stenotrophomonas. The aim of this manuscript is to survey the effects of plant-growth-promoting rhizobacteria by presenting case studies and successful paradigms in various agricultural and horticultural crops.

          Related collections

          Most cited references381

          • Record: found
          • Abstract: found
          • Article: not found

          Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions.

          The physiological changes in tolerant soybean plants under salt and drought stress conditions with Pseudomonas putida H-2-3 were investigated. A bacterial isolate H-2-3 was isolated from soil and identified as Pseudomonas putida H-2-3 by 16S rDNA sequences. The treatment of P. putida H-2-3 significantly increased the length, fresh and dry weight of shoot and chlorophyll content in gibberellins (GAs) deficient mutant Waito-c rice seedlings over the control, it might be the presence of GA1, GA4, GA9 and GA20. The soybean plant growth was retarded in salt (120 mM sodium chloride) and drought (15% polyethylene glycol) stress conditions at 10 days treatments, while P. putida H-2-3 effectively enhanced the shoot length and fresh weight of plants suffered at salt and drought stress. The chlorophyll content was lower in abiotic stress conditions and bacterial inoculant P. putida H-2-3 mitigated the stress effects by an evidence of higher quantity of chlorophyll content in plants exposed to salt and drought. The stress hormonal analysis revealed that individual treatment of P. putida H-2-3, salt and drought significantly enhanced the abscisic acid and salicylic acid content than their control. P. putida H-2-3 applied to salt and drought stressed plants showed a lower level of abscisic acid and salicylic acid and a higher level of jasmonic acid content. Under stress condition induced by salt and drought in plants expressed higher level of total polyphenol, superoxide dismutase and radical scavenging activity and no significant changes in flavonoids. The bio-inoculant, P. putida H-2-3 modulated those antioxidants by declining superoxide dismutase, flavonoids and radical scavenging activity. P. putida H-2-3 induced tolerance against abiotic stress was confirmed by a reduction of Na content in abiotic stressed plants. The results suggest that P. putida H-2-3 application reprograms the chlorophyll, stress hormones and antioxidants expression in abiotic stress affected soybean plant and improves their growth under stress environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Streptomyces : implications and interactions in plant growth promotion

            With the impending increase of the world population by 2050, more activities have been directed toward the improvement of crop yield and a safe environment. The need for chemical-free agricultural practices is becoming eminent due to the effects of these chemicals on the environment and human health. Actinomycetes constitute a significant percentage of the soil microbial community. The Streptomyces genus, which is the most abundant and arguably the most important actinomycetes, is a good source of bioactive compounds, antibiotics, and extracellular enzymes. These genera have shown over time great potential in improving the future of agriculture. This review highlights and buttresses the agricultural importance of Streptomyces through its biocontrol and plant growth-promoting activities. These activities are highlighted and discussed in this review. Some biocontrol products from this genus are already being marketed while work is still ongoing on this productive genus. Compared to more focus on its biocontrol ability, less work has been done on it as a biofertilizer until recently. This genus is as efficient as a biofertilizer as it is as a biocontrol.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum.

              Induction of stress ethylene production in the plant system is one of the consequences of salt stress which apart from being toxic to the plant also inhibits mycorrhizal colonization and rhizobial nodulation by oxidative damage. Tolerance to salinity in pea plants was assessed by reducing stress ethylene levels through ACC deaminase-containing rhizobacteria Arthrobacter protophormiae (SA3) and promoting plant growth through improved colonization of beneficial microbes like Rhizobium leguminosarum (R) and Glomus mosseae (G). The experiment comprised of treatments with combinations of SA3, G, and R under varying levels of salinity. The drop in plant biomass associated with salinity stress was significantly lesser in SA3 treated plants compared to non-treated plants. The triple interaction of SA3+G+R performed synergistically to induce protective mechanism against salt stress and showed a new perspective of plant-microorganism interaction. This tripartite collaboration increased plant weight by 53%, reduced proline content, lipid peroxidation and increased pigment content under 200 mM salt condition. We detected that decreased ACC oxidase (ACO) activity induced by SA3 and reduced ACC synthase (ACS) activity in AMF (an observation not reported earlier as per our knowledge) inoculated plants simultaneously reduced the ACC content by 60% (responsible for generation of stress ethylene) in SA3+G+R treated plants as compared to uninoculated control plants under 200 mM salt treatment. The results indicated that ACC deaminase-containing SA3 brought a putative protection mechanism (decrease in ACC content) under salt stress, apart from alleviating ethylene-induced damage, by enhancing nodulation and AMF colonization in the plants resulting in improved nutrient uptake and plant growth.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                PLANCD
                Plants
                Plants
                MDPI AG
                2223-7747
                March 2024
                February 23 2024
                : 13
                : 5
                : 613
                Article
                10.3390/plants13050613
                10934396
                38475460
                400b74d5-0d7f-4dfe-a4a3-52e304aebdd5
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article