2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The current knowledge gap on metallothionein mediated metal-detoxification in Elasmobranchs

      research-article
      PeerJ
      PeerJ Inc.
      Metallothionein, Metal contamination, Detoxification, Pollution, Sharks, Rays and skates

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Elasmobranchs are particularly vulnerable to environmental contamination, especially pollutants that may bioaccumulate and biomagnify, throughout the trophic web, such as metals. However, Elasmobranch management and conservation plans are challenging, and this group is often neglected regarding ecotoxicological analyses, particularly concerning metal detoxification mechanisms. This article discusses metallothionein (MT) mediated metal detoxification in Elasmobranchs and reflects on the current knowledge gap in this regard.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Extinction risk and conservation of the world’s sharks and rays

          The rapid expansion of human activities threatens ocean-wide biodiversity. Numerous marine animal populations have declined, yet it remains unclear whether these trends are symptomatic of a chronic accumulation of global marine extinction risk. We present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes—sharks, rays, and chimaeras. We estimate that one-quarter are threatened according to IUCN Red List criteria due to overfishing (targeted and incidental). Large-bodied, shallow-water species are at greatest risk and five out of the seven most threatened families are rays. Overall chondrichthyan extinction risk is substantially higher than for most other vertebrates, and only one-third of species are considered safe. Population depletion has occurred throughout the world’s ice-free waters, but is particularly prevalent in the Indo-Pacific Biodiversity Triangle and Mediterranean Sea. Improved management of fisheries and trade is urgently needed to avoid extinctions and promote population recovery. DOI: http://dx.doi.org/10.7554/eLife.00590.001
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fish bioaccumulation and biomarkers in environmental risk assessment: a review.

            In this review, a wide array of bioaccumulation markers and biomarkers, used to demonstrate exposure to and effects of environmental contaminants, has been discussed in relation to their feasibility in environmental risk assessment (ERA). Fish bioaccumulation markers may be applied in order to elucidate the aquatic behavior of environmental contaminants, as bioconcentrators to identify certain substances with low water levels and to assess exposure of aquatic organisms. Since it is virtually impossible to predict the fate of xenobiotic substances with simple partitioning models, the complexity of bioaccumulation should be considered, including toxicokinetics, metabolism, biota-sediment accumulation factors (BSAFs), organ-specific bioaccumulation and bound residues. Since it remains hard to accurately predict bioaccumulation in fish, even with highly sophisticated models, analyses of tissue levels are required. The most promising fish bioaccumulation markers are body burdens of persistent organic pollutants, like PCBs and DDTs. Since PCDD and PCDF levels in fish tissues are very low as compared with the sediment levels, their value as bioaccumulation markers remains questionable. Easily biodegradable compounds, such as PAHs and chlorinated phenols, do not tend to accumulate in fish tissues in quantities that reflect the exposure. Semipermeable membrane devices (SPMDs) have been successfully used to mimic bioaccumulation of hydrophobic organic substances in aquatic organisms. In order to assess exposure to or effects of environmental pollutants on aquatic ecosystems, the following suite of fish biomarkers may be examined: biotransformation enzymes (phase I and II), oxidative stress parameters, biotransformation products, stress proteins, metallothioneins (MTs), MXR proteins, hematological parameters, immunological parameters, reproductive and endocrine parameters, genotoxic parameters, neuromuscular parameters, physiological, histological and morphological parameters. All fish biomarkers are evaluated for their potential use in ERA programs, based upon six criteria that have been proposed in the present paper. This evaluation demonstrates that phase I enzymes (e.g. hepatic EROD and CYP1A), biotransformation products (e.g. biliary PAH metabolites), reproductive parameters (e.g. plasma VTG) and genotoxic parameters (e.g. hepatic DNA adducts) are currently the most valuable fish biomarkers for ERA. The use of biomonitoring methods in the control strategies for chemical pollution has several advantages over chemical monitoring. Many of the biological measurements form the only way of integrating effects on a large number of individual and interactive processes in aquatic organisms. Moreover, biological and biochemical effects may link the bioavailability of the compounds of interest with their concentration at target organs and intrinsic toxicity. The limitations of biomonitoring, such as confounding factors that are not related to pollution, should be carefully considered when interpreting biomarker data. Based upon this overview there is little doubt that measurements of bioaccumulation and biomarker responses in fish from contaminated sites offer great promises for providing information that can contribute to environmental monitoring programs designed for various aspects of ERA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Heavy metals and living systems: An overview

              Heavy metals are natural constituents of the earth's crust, but indiscriminate human activities have drastically altered their geochemical cycles and biochemical balance. This results in accumulation of metals in plant parts having secondary metabolites, which is responsible for a particular pharmacological activity. Prolonged exposure to heavy metals such as cadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Molecular understanding of plant metal accumulation has numerous biotechnological implications also, the long term effects of which might not be yet known.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                2 November 2020
                2020
                : 8
                : e10293
                Affiliations
                Laboratório de Avaliação e Promoção a Saúde Ambiental, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
                Author information
                http://orcid.org/0000-0002-9451-471X
                Article
                10293
                10.7717/peerj.10293
                7643557
                3fe67be8-a76b-47b3-b6eb-5bd6c0674b4a
                © 2020 Hauser-Davis

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 15 August 2020
                : 12 October 2020
                Funding
                Funded by: FAPERJ (Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro)
                This work was supported by FAPERJ (Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Biochemistry
                Conservation Biology
                Zoology
                Ecotoxicology
                Aquatic and Marine Chemistry

                metallothionein,metal contamination,detoxification,pollution,sharks,rays and skates

                Comments

                Comment on this article