11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Comets play a dual role in understanding the formation and evolution of the solar system. First, the composition of comets provides information about the origin of the giant planets and their moons because comets formed early and their composition is not expected to have evolved significantly since formation. They, therefore serve as a record of conditions during the early stages of solar system formation. Once comets had formed, their orbits were perturbed allowing them to travel into the inner solar system and impact the planets. In this way they contributed to the volatile inventory of planetary atmospheres. We review here how knowledge of comet composition up to the time of the Rosetta mission has contributed to understanding the formation processes of the giant planets, their moons and small icy bodies in the solar system. We also discuss how comets contributed to the volatile inventories of the giant and terrestrial planets.

          Related collections

          Most cited references289

          • Record: found
          • Abstract: found
          • Article: not found

          Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets.

          The petrology record on the Moon suggests that a cataclysmic spike in the cratering rate occurred approximately 700 million years after the planets formed; this event is known as the Late Heavy Bombardment (LHB). Planetary formation theories cannot naturally account for an intense period of planetesimal bombardment so late in Solar System history. Several models have been proposed to explain a late impact spike, but none of them has been set within a self-consistent framework of Solar System evolution. Here we propose that the LHB was triggered by the rapid migration of the giant planets, which occurred after a long quiescent period. During this burst of migration, the planetesimal disk outside the orbits of the planets was destabilized, causing a sudden massive delivery of planetesimals to the inner Solar System. The asteroid belt was also strongly perturbed, with these objects supplying a significant fraction of the LHB impactors in accordance with recent geochemical evidence. Our model not only naturally explains the LHB, but also reproduces the observational constraints of the outer Solar System.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origin of the orbital architecture of the giant planets of the Solar System.

            Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Atmospheric influence of Earth's earliest sulfur cycle

              Mass-independent isotopic signatures for delta(33)S, delta(34)S, and delta(36)S from sulfide and sulfate in Precambrian rocks indicate that a change occurred in the sulfur cycle between 2090 and 2450 million years ago (Ma). Before 2450 Ma, the cycle was influenced by gas-phase atmospheric reactions. These atmospheric reactions also played a role in determining the oxidation state of sulfur, implying that atmospheric oxygen partial pressures were low and that the roles of oxidative weathering and of microbial oxidation and reduction of sulfur were minimal. Atmospheric fractionation processes should be considered in the use of sulfur isotopes to study the onset and consequences of microbial fractionation processes in Earth's early history.
                Bookmark

                Author and article information

                Journal
                100971458
                22616
                Space Sci Rev
                Space Sci Rev
                Space science reviews
                0038-6308
                6 May 2019
                21 May 2015
                December 2015
                17 May 2019
                : 197
                : 1-4
                : 297-342
                Affiliations
                [1 ]Southwest Research Institute, San Antonio, TX, USA
                [2 ]Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
                [3 ]CRPG-CNRS, Nancy-Université, Vandoeuvre-lès-Nancy, France
                [4 ]Max Planck Institute for Solar System Research, Göttingen, Germany
                [5 ]University of Arizona, Tucson, AZ, USA
                [6 ]Jet Propulsion Laboratory, Pasadena, CA, USA
                Author notes
                Author information
                http://orcid.org/0000-0001-8397-3315
                Article
                NASAPA1027480
                10.1007/s11214-015-0161-z
                6525011
                3fe5c2d4-b333-4982-b9c0-423f215a797b

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                This article is published with open access at Springerlink.com

                History
                Categories
                Article

                solar system formation,comets,atmospheres,giant planets,terrestrial planets,moon formation

                Comments

                Comment on this article