25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular composition and functional properties of f-channels in murine embryonic stem cell-derived pacemaker cells

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mouse embryonic stem cells (mESCs) differentiate into all cardiac phenotypes, and thus represent an important potential source for cardiac regenerative therapies. Here we characterize the molecular composition and functional properties of "funny" (f-) channels in mESC-derived pacemaker cells. Following differentiation, a fraction of mESC-derived myocytes exhibited action potentials characterized by a slow diastolic depolarization and expressed the I(f) current. I(f) plays an important role in the pacemaking mechanism of these cells since ivabradine (3 microM), a specific f-channel inhibitor, inhibited I(f) by about 50% and slowed rate by about 25%. Analysis of I(f) kinetics revealed the presence of two populations of cells, one expressing a fast- and one a slow-activating I(f); the two components are present both at early and late stages of differentiation and had also distinct activation curves. Immunofluorescence analysis revealed that HCN1 and HCN4 are the only isoforms of the pacemaker channel expressed in these cells. Rhythmic cells responded to beta-adrenergic and muscarinic agonists: isoproterenol (1 microM) accelerated and acetylcholine (0.1 microM) slowed spontaneous rate by about 50 and 12%, respectively. The same agonists caused quantitatively different effects on I(f): isoproterenol shifted activation curves by about 5.9 and 2.7 mV and acetylcholine by -4.0 and -2.0 mV in slow and fast I(f)-activating cells, respectively. Accordingly, beta1- and beta2-adrenergic, and M2-muscarinic receptors were detected in mESC-derived myocytes. Our data show that mESC-derived pacemaker cells functionally express proteins which underlie generation and modulation of heart rhythm, and can therefore represent a potential cell substrate for the generation of biological pacemakers.

          Related collections

          Author and article information

          Journal
          Journal of Molecular and Cellular Cardiology
          Journal of Molecular and Cellular Cardiology
          Elsevier BV
          00222828
          March 2009
          March 2009
          : 46
          : 3
          : 343-351
          Article
          10.1016/j.yjmcc.2008.12.001
          19135060
          3fdfa821-6222-4037-87da-b11e8639294a
          © 2009

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content1,544

          Cited by8