5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diet-microbiota associations in gastrointestinal research: a systematic review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Interactions between diet and gastrointestinal microbiota influence health status and outcomes. Evaluating these relationships requires accurate quantification of dietary variables relevant to microbial metabolism, however current dietary assessment methods focus on dietary components relevant to human digestion only. The aim of this study was to synthesize research on foods and nutrients that influence human gut microbiota and thereby identify knowledge gaps to inform dietary assessment advancements toward better understanding of diet–microbiota interactions. Thirty-eight systematic reviews and 106 primary studies reported on human diet-microbiota associations. Dietary factors altering colonic microbiota included dietary patterns, macronutrients, micronutrients, bioactive compounds, and food additives. Reported diet-microbiota associations were dominated by routinely analyzed nutrients, which are absorbed from the small intestine but analyzed for correlation to stool microbiota. Dietary derived microbiota-relevant nutrients are more challenging to quantify and underrepresented in included studies. This evidence synthesis highlights advancements needed, including opportunities for expansion of food composition databases to include microbiota-relevant data, particularly for human intervention studies. These advances in dietary assessment methodology will facilitate translation of microbiota-specific nutrition therapy to practice.

          Related collections

          Most cited references190

          • Record: found
          • Abstract: found
          • Article: not found

          Diet rapidly and reproducibly alters the human gut microbiome

          Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut 1–5 , but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals 2 , reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease 6 . In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut microbiota in human metabolic health and disease

            Observational findings achieved during the past two decades suggest that the intestinal microbiota may contribute to the metabolic health of the human host and, when aberrant, to the pathogenesis of various common metabolic disorders including obesity, type 2 diabetes, non-alcoholic liver disease, cardio-metabolic diseases and malnutrition. However, to gain a mechanistic understanding of how the gut microbiota affects host metabolism, research is moving from descriptive microbiota census analyses to cause-and-effect studies. Joint analyses of high-throughput human multi-omics data, including metagenomics and metabolomics data, together with measures of host physiology and mechanistic experiments in humans, animals and cells hold potential as initial steps in the identification of potential molecular mechanisms behind reported associations. In this Review, we discuss the current knowledge on how gut microbiota and derived microbial compounds may link to metabolism of the healthy host or to the pathogenesis of common metabolic diseases. We highlight examples of microbiota-targeted interventions aiming to optimize metabolic health, and we provide perspectives for future basic and translational investigations within the nascent and promising research field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Linking long-term dietary patterns with gut microbial enterotypes.

              Diet strongly affects human health, partly by modulating gut microbiome composition. We used diet inventories and 16S rDNA sequencing to characterize fecal samples from 98 individuals. Fecal communities clustered into enterotypes distinguished primarily by levels of Bacteroides and Prevotella. Enterotypes were strongly associated with long-term diets, particularly protein and animal fat (Bacteroides) versus carbohydrates (Prevotella). A controlled-feeding study of 10 subjects showed that microbiome composition changed detectably within 24 hours of initiating a high-fat/low-fiber or low-fat/high-fiber diet, but that enterotype identity remained stable during the 10-day study. Thus, alternative enterotype states are associated with long-term diet.
                Bookmark

                Author and article information

                Journal
                Gut Microbes
                Gut Microbes
                Gut Microbes
                Taylor & Francis
                1949-0976
                1949-0984
                9 May 2024
                2024
                9 May 2024
                : 16
                : 1
                : 2350785
                Affiliations
                [a ]NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle; , Newcastle, NSW, Australia
                [b ]Immune Health Program, Hunter Medical Research Institute; , New Lambton Heights, NSW, Australia
                [c ]School of Medicine & Public Health, College of Health, Medicine and Wellbeing, University of Newcastle; , Newcastle, NSW, Australia
                [d ]School of Biomedical Sciences & Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle; , Newcastle, NSW, Australia
                Author notes
                CONTACT Kerith Duncanson kerith.duncanson@ 123456newcastle.edu.au NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Level 3 East, Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
                Author information
                https://orcid.org/0000-0001-5525-6589
                Article
                2350785
                10.1080/19490976.2024.2350785
                11093048
                38725230
                3fc40364-81f0-4434-ae2a-e02d91febf04
                © 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 1, References: 187, Pages: 1
                Categories
                Review Article
                Review

                Microbiology & Virology
                microbiota,microbiome,diet,dietary assessment,diet-microbiota correlation
                Microbiology & Virology
                microbiota, microbiome, diet, dietary assessment, diet-microbiota correlation

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content348

                Cited by2

                Most referenced authors2,827