22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of biochar and vermicompost on microorganisms and enzymatic activities in greenhouse soil

      , , , , , ,
      Frontiers in Environmental Science
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects of different contents of biochar and vermicompost on the microbial and enzymatic activities of greenhouse soil were determined to provide a theoretical basis for improving the quality of greenhouse soil. The experiment was conducted in a greenhouse using potted tomatoes. Five treatments consisted of different amount ratios of organic amendments: 1% biochar (BC1), 3% biochar (BC3), 5% biochar (BC5), 3% vermicompost (VC3), and 5% vermicompost (VC5), with no addition of organic amendments as the control (CK). Compared with CK, the pH, organic matter content, and DOC concentration increased in treatment groups. The organic matter content of BC3 and BC5 significantly increased by 54.6% and 72.8%, respectively, and DOC concentration of BC3 significantly increased by 43.9%. Biochar and vermicompost significantly increased the diversity of bacterial and fungal communities in soil, as well as the abundance of Actinomycetes, Acidobacteria, Ascomycetes, and Aspergillus, and reduced the abundance of Aspergillus. The activities of urease and alkaline phosphatase were significantly increased, and the activity of nitrate reductase was inhibited in all treatment groups compared with CK. In addition, a highly significant positive correlation was observed among pH, Acidobacteria phylum abundance, and alkaline phosphatase activity in all treatments. DOC concentration was positively correlated with pH, organic matter content, Acidobacteria phylum abundance and alkaline phosphatase activity. Biochar and vermicompost were effective in improving the physicochemical properties of greenhouse soil, enhancing microbial diversity, and affecting enzymatic activities. Therefore, BC3 (3% biochar) had the most significant effect on community diversity and alkaline phosphatase and nitrate reductase activities. VC5 (5% vermicompost) had the best promotion effect on urease activity. This study highlights that biochar and vermicompost as organic amendments are recommended to improve the quality of greenhouse soils.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Structure, variation, and assembly of the root-associated microbiomes of rice.

          Plants depend upon beneficial interactions between roots and microbes for nutrient availability, growth promotion, and disease suppression. High-throughput sequencing approaches have provided recent insights into root microbiomes, but our current understanding is still limited relative to animal microbiomes. Here we present a detailed characterization of the root-associated microbiomes of the crop plant rice by deep sequencing, using plants grown under controlled conditions as well as field cultivation at multiple sites. The spatial resolution of the study distinguished three root-associated compartments, the endosphere (root interior), rhizoplane (root surface), and rhizosphere (soil close to the root surface), each of which was found to harbor a distinct microbiome. Under controlled greenhouse conditions, microbiome composition varied with soil source and genotype. In field conditions, geographical location and cultivation practice, namely organic vs. conventional, were factors contributing to microbiome variation. Rice cultivation is a major source of global methane emissions, and methanogenic archaea could be detected in all spatial compartments of field-grown rice. The depth and scale of this study were used to build coabundance networks that revealed potential microbial consortia, some of which were involved in methane cycling. Dynamic changes observed during microbiome acquisition, as well as steady-state compositions of spatial compartments, support a multistep model for root microbiome assembly from soil wherein the rhizoplane plays a selective gating role. Similarities in the distribution of phyla in the root microbiomes of rice and other plants suggest that conclusions derived from this study might be generally applicable to land plants.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cycling downwards – dissolved organic matter in soils

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis

                Bookmark

                Author and article information

                Journal
                Frontiers in Environmental Science
                Front. Environ. Sci.
                Frontiers Media SA
                2296-665X
                January 4 2023
                January 4 2023
                : 10
                Article
                10.3389/fenvs.2022.1060277
                3fc14453-dc8b-4771-acdf-d7be9bbf7eca
                © 2023

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content543

                Cited by4

                Most referenced authors795