37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Catalases Are NAD(P)H-Dependent Tellurite Reductases

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(P)H is not required for their dismutase activity. Although NAD(P)H protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(P)H-dependent reduction of soluble tellurite ion (TeO 3 2−) to the less toxic, insoluble metal, tellurium (Te°), in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Use of T7 RNA polymerase to direct expression of cloned genes.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis.

            Tuberculosis is responsible for one in four of all avoidable adult deaths in developing countries. Increased frequency and accelerated fatality of the disease among individuals infected with human immunodeficiency virus has raised worldwide concern that control programmes may be inadequate, and the emergence of multidrug-resistant strains of Mycobacterium tuberculosis has resulted in several recent fatal outbreaks in the United States. Isonicotinic acid hydrazide (isoniazid, INH) forms the core of antituberculosis regimens; however, clinical isolates that are resistant to INH show reduced catalase activity and a relative lack of virulence in guinea-pigs. Here we use mycobacterial genetics to study the molecular basis of INH resistance. A single M. tuberculosis gene, katG, encoding both catalase and peroxidase, restored sensitivity to INH in a resistant mutant of Mycobacterium smegmatis, and conferred INH susceptibility in some strains of Escherichia coli. Deletion of katG from the chromosome was associated with INH resistance in two patient isolates of M. tuberculosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228).

              Staphylococcus epidermidis strains are diverse in their pathogenicity; some are invasive and cause serious nosocomial infections, whereas others are non-pathogenic commensal organisms. To analyse the implications of different virulence factors in Staphylococcus epidermidis infections, the complete genome of Staphylococcus epidermidis strain ATCC 12228, a non-biofilm forming, non-infection associated strain used for detection of residual antibiotics in food products, was sequenced. This strain showed low virulence by mouse and rat experimental infections. The genome consists of a single 2499 279 bp chromosome and six plasmids. The chromosomal G + C content is 32.1% and 2419 protein coding sequences (CDS) are predicted, among which 230 are putative novel genes. Compared to the virulence factors in Staphylococcus aureus, aside from delta-haemolysin and beta-haemolysin, other toxin genes were not found. In contrast, the majority of adhesin genes are intact in ATCC 12228. Most strikingly, the ica operon coding for the enzymes synthesizing interbacterial cellular polysaccharide is missing in ATCC 12228 and rearrangements of adjacent genes are shown. No mec genes, IS256, IS257, were found in ATCC 12228. It is suggested that the absence of the ica operon is a genetic marker in commensal Staphylococcus epidermidis strains which are less likely to become invasive.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS ONE
                plos
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2006
                20 December 2006
                : 1
                : 1
                : e70
                Affiliations
                [1 ]Laboratorio de Microbiología Molecular, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
                [2 ]Laboratorio de Microbiología Molecular y Biotecnología, Facultad de Ciencias de la Salud, Universidad Andrés Bello Santiago, Chile
                [3 ]Laboratorio de Microbiología Industrial y Biotecnología, Facultad de Ciencias, Universidad San Luis Gonzaga de Ica Ica, Perú
                [4 ]Blood Testing Division, Chiron Corporation Emeryville, California, United States of America
                [5 ]Department of Biology, Texas A & M University, College Station Texas, United States of America
                Baylor College of Medicine, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: cvasquez@ 123456usach.cl

                Conceived and designed the experiments: PY CV. Performed the experiments: IC FA. Analyzed the data: PY CV IC FA JP DF MA CS JT SP. Contributed reagents/materials/analysis tools: PY CV. Wrote the paper: PY CV.

                Article
                06-PONE-RA-00229R1
                10.1371/journal.pone.0000070
                1762332
                17183702
                3fa35ecd-8919-4023-9524-4b91fcf04a18
                Calderón et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 October 2006
                : 6 November 2006
                Page count
                Pages: 8
                Categories
                Research Article
                Biochemistry
                Microbiology
                Molecular Biology
                Genetics and Genomics/Gene Therapy

                Uncategorized
                Uncategorized

                Comments

                Comment on this article