20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Novel CELSR1 Mutations in Spina Bifida

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spina bifida is one of the most common neural tube defects (NTDs) with a complex etiology. Variants in planar cell polarity (PCP) genes have been associated with NTDs including spina bifida in both animal models and human cohorts. In this study, we sequenced all exons of CELSR1 in 192 spina bifida patients from a California population to determine the contribution of CELSR1 mutations in the studied population. Novel and rare variants identified in these patients were subsequently genotyped in 190 ethnically matched control individuals. Six missense mutations not found in controls were predicted to be deleterious by both SIFT and PolyPhen. Two TG dinucleotide repeat variants were individually detected in 2 spina bifida patients but not detected in controls. In vitro functional analysis showed that the two TG dinucleotide repeat variants not only changed subcellular localization of the CELSR1 protein, but also impaired the physical association between CELSR1 and VANGL2, and thus diminished the ability to recruit VANGL2 for cell-cell contact. In total, 3% of our spina bifida patients carry deleterious or predicted to be deleterious CELSR1 mutations. Our findings suggest that CELSR1 mutations contribute to the risk of spina bifida in a cohort of spina bifida patients from California.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group.

          A randomised double-blind prevention trial with a factorial design was conducted at 33 centres in seven countries to determine whether supplementation with folic acid (one of the vitamins in the B group) or a mixture of seven other vitamins (A,D,B1,B2,B6,C and nicotinamide) around the time of conception can prevent neural tube defects (anencephaly, spina bifida, encephalocele). A total of 1817 women at high risk of having a pregnancy with a neural tube defect, because of a previous affected pregnancy, were allocated at random to one of four groups--namely, folic acid, other vitamins, both, or neither. 1195 had a completed pregnancy in which the fetus or infant was known to have or not have a neural tube defect; 27 of these had a known neural tube defect, 6 in the folic acid groups and 21 in the two other groups, a 72% protective effect (relative risk 0.28, 95% confidence interval 0.12-0.71). The other vitamins showed no significant protective effect (relative risk 0.80, 95% Cl 0.32-1.72). There was no demonstrable harm from the folic acid supplementation, though the ability of the study to detect rare or slight adverse effects was limited. Folic acid supplementation starting before pregnancy can now be firmly recommended for all women who have had an affected pregnancy, and public health measures should be taken to ensure that the diet of all women who may bear children contains an adequate amount of folic acid.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Planar cell polarity signaling: from fly development to human disease.

            Most, if not all, cell types and tissues display several aspects of polarization. In addition to the ubiquitous epithelial cell polarity along the apical-basolateral axis, many epithelial tissues and organs are also polarized within the plane of the epithelium. This is generally referred to as planar cell polarity (PCP; or historically, tissue polarity). Genetic screens in Drosophila pioneered the discovery of core PCP factors, and subsequent work in vertebrates has established that the respective pathways are evolutionarily conserved. PCP is not restricted only to epithelial tissues but is also found in mesenchymal cells, where it can regulate cell migration and cell intercalation. Moreover, particularly in vertebrates, the conserved core PCP signaling factors have recently been found to be associated with the orientation or formation of cilia. This review discusses new developments in the molecular understanding of PCP establishment in Drosophila and vertebrates; these developments are integrated with new evidence that links PCP signaling to human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse.

              We identified two novel mouse mutants with abnormal head-shaking behavior and neural tube defects during the course of independent ENU mutagenesis experiments. The heterozygous and homozygous mutants exhibit defects in the orientation of sensory hair cells in the organ of Corti, indicating a defect in planar cell polarity. The homozygous mutants exhibit severe neural tube defects as a result of failure to initiate neural tube closure. We show that these mutants, spin cycle and crash, carry independent missense mutations within the coding region of Celsr1, encoding a large protocadherin molecule [1]. Celsr1 is one of three mammalian homologs of Drosophila flamingo/starry night, which is essential for the planar cell polarity pathway in Drosophila together with frizzled, dishevelled, prickle, strabismus/van gogh, and rhoA. The identification of mouse mutants of Celsr1 provides the first evidence for the function of the Celsr family in planar cell polarity in mammals and further supports the involvement of a planar cell polarity pathway in vertebrate neurulation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                14 March 2014
                : 9
                : 3
                : e92207
                Affiliations
                [1 ]Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, United States of America
                [2 ]Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
                [3 ]Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Stanford, California, United States of America
                [4 ]Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, United States of America
                University of Bonn, Institut of experimental hematology and transfusion medicine, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RHF. Performed the experiments: YL. Analyzed the data: YL. Contributed reagents/materials/analysis tools: WY GMS. Wrote the paper: YL HZ MER GMS RHF.

                Article
                PONE-D-13-40448
                10.1371/journal.pone.0092207
                3954890
                24632739
                3f99bf62-0833-4fe9-93fb-4deada53d622
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 October 2013
                : 20 February 2014
                Page count
                Pages: 8
                Funding
                This work was supported in part by NIH grants HD067244, NS076465, and ES021006. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cell Physiology
                Membrane Trafficking
                Molecular Cell Biology
                Evolutionary Biology
                Population Genetics
                Genetic Polymorphism
                Genetics
                Genetics of Disease
                Human Genetics
                Molecular Genetics
                Mutation
                Medicine and Health Sciences
                Neurology
                Developmental and Pediatric Neurology
                Spinal Cord Diseases
                Pediatrics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article