13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The associated increase in the lipopolysaccharide (LPS) levels and uremic toxins in chronic kidney disease (CKD) has shifted the way we focus on intestinal microbiota. This study shows that a disruption of the intestinal barrier in CKD promotes leakage of LPS from the gut, subsequently decreasing insulin sensitivity. Butyrate treatment improved the intestinal barrier function by increasing colonic mucin and tight junction (TJ) proteins. This modulation further ameliorated metabolic functions such as insulin intolerance and improved renal function.

          Methods

          Renal failure was induced by 5/6th nephrectomy (Nx) in rats. A group of Nx and control rats received sodium butyrate in drinking water. The Nx groups were compared with sham-operated controls.

          Results

          The Nx rats had significant increases in serum creatinine, urea and proteinuria. These animals had impaired glucose and insulin tolerance and increased gluconeogenesis, which corresponded with decreased glucagon-like peptide-1 (GLP-1) secretion. The Nx animals suffered significant loss of intestinal TJ proteins, colonic mucin and mucin 2 protein. This was associated with a significant increase in circulating LPS, suggesting a leaky gut phenomenon. 5′adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, known to modulate epithelial TJs and glucose metabolism, was significantly reduced in the intestine of the Nx group. Anti-inflammatory cytokine, interleukin 10, anti-bacterial peptide and cathelicidin-related antimicrobial peptide were also lowered in the Nx cohort. Butyrate treatment increased AMPK phosphorylation, improved renal function and controlled hyperglycemia.

          Conclusions

          Butyrate improves AMPK phosphorylation, increases GLP-1 secretion and promotes colonic mucin and TJ proteins, which strengthen the gut wall. This decreases LPS leakage and inflammation. Taken together, butyrate improves metabolic parameters such as insulin resistance and markers of renal failure in CKD animals.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Immunological aspects of intestinal mucus and mucins.

          A number of mechanisms ensure that the intestine is protected from pathogens and also against our own intestinal microbiota. The outermost of these is the secreted mucus, which entraps bacteria and prevents their translocation into the tissue. Mucus contains many immunomodulatory molecules and is largely produced by the goblet cells. These cells are highly responsive to the signals they receive from the immune system and are also able to deliver antigens from the lumen to dendritic cells in the lamina propria. In this Review, we will give a basic overview of mucus, mucins and goblet cells, and explain how each of these contributes to immune regulation in the intestine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Expansion of Urease- and Uricase-Containing, Indole- and p-Cresol-Forming and Contraction of Short-Chain Fatty Acid-Producing Intestinal Microbiota in ESRD

            Background: Intestinal microbiome constitutes a symbiotic ecosystem that is essential for health, and changes in its composition/function cause various illnesses. Biochemical milieu shapes the structure and function of the microbiome. Recently, we found marked differences in the abundance of numerous bacterial taxa between ESRD and healthy individuals. Influx of urea and uric acid and dietary restriction of fruits and vegetables to prevent hyperkalemia alter ESRD patients' intestinal milieu. We hypothesized that relative abundances of bacteria possessing urease, uricase, and p-cresol- and indole-producing enzymes is increased, while abundance of bacteria containing enzymes converting dietary fiber to short-chain fatty acids (SCFA) is reduced in ESRD. Methods: Reference sets of bacteria containing genes of interest were compiled to family, and sets of intestinal bacterial families showing differential abundances between 12 healthy and 24 ESRD individuals enrolled in our original study were compiled. Overlap between sets was assessed using hypergeometric distribution tests. Results: Among 19 microbial families that were dominant in ESRD patients, 12 possessed urease, 5 possessed uricase, and 4 possessed indole and p-cresol-forming enzymes. Among 4 microbial families that were diminished in ESRD patients, 2 possessed butyrate-forming enzymes. Probabilities of these overlapping distributions were <0.05. Conclusions: ESRD patients exhibited significant expansion of bacterial families possessing urease, uricase, and indole and p-cresol forming enzymes, and contraction of families possessing butyrate-forming enzymes. Given the deleterious effects of indoxyl sulfate, p-cresol sulfate, and urea-derived ammonia, and beneficial actions of SCFA, these changes in intestinal microbial metabolism contribute to uremic toxicity and inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease.

              Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are associated with systemic inflammation and acquired immunodeficiency, which promote cardiovascular disease, body wasting, and infections as leading causes of death. This phenomenon persists despite dialysis-related triggers of immune deregulation having been largely eliminated. Here we propose a potential immunoregulatory role of the intestinal microbiota in CKD/ESRD. We discuss how the metabolic alterations of uremia favor pathogen overgrowth (dysbiosis) in the gut and an increased translocation of living bacteria and bacterial components. This process has the potential to activate innate immunity and systemic inflammation. Persistent innate immune activation involves the induction of immunoregulatory mediators that suppress innate and adaptive immunity, similar to the concept of 'endotoxin tolerance' or 'immune paralysis' in advanced sepsis or chronic infections. Renal science has largely neglected the gut as a source of triggers for CKD/ESRD-related immune derangements and complications and lags behind on the evolving microbiota research. Interdisciplinary research activities at all levels are needed to unravel the pathogenic role of the intestinal microbiota in kidney disease and to evaluate if therapeutic interventions that manipulate the microbiota, such as pre- or probiotics, have a therapeutic potential to correct CKD/ESRD-related immune deregulation and to prevent the associated complications.
                Bookmark

                Author and article information

                Journal
                Nephrol Dial Transplant
                Nephrol. Dial. Transplant
                ndt
                Nephrology Dialysis Transplantation
                Oxford University Press
                0931-0509
                1460-2385
                May 2019
                06 August 2018
                06 August 2018
                : 34
                : 5
                : 783-794
                Affiliations
                [1 ]Department of Internal Medicine, Nephrology, Virginia Commonwealth University, Richmond, VA, USA
                [2 ]Department of Anatomy, Virginia Commonwealth University, Richmond, VA, USA
                [3 ]Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
                [4 ]Department of Internal Medicine, Pulmonary and Critical Care, Virginia Commonwealth University, Richmond, VA, USA
                Author notes
                Correspondence and offprint requests to: Siddhartha S. Ghosh; E-mail: siddhartha.ghosh@ 123456vcuhealth.org
                Author information
                http://orcid.org/0000-0002-7793-6945
                http://orcid.org/0000-0002-7793-6945
                Article
                gfy238
                10.1093/ndt/gfy238
                6503301
                30085297
                3f6ceb2f-f2aa-4a17-91c5-e6841bb8453c
                © The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 30 November 2017
                Page count
                Pages: 12
                Categories
                ORIGINAL ARTICLES
                Basic Research

                Nephrology
                chronic renal failure,diabetic kidney disease,gut,nephrectomy,short chain fatty acid
                Nephrology
                chronic renal failure, diabetic kidney disease, gut, nephrectomy, short chain fatty acid

                Comments

                Comment on this article