6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The SARS‐CoV‐2 spike protein induces lung cancer migration and invasion in a TLR2‐dependent manner

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiplex genome engineering using CRISPR/Cas systems.

            Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China

              China and the rest of the world are experiencing an outbreak of a novel betacoronavirus known as severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). 1 By Feb 12, 2020, the rapid spread of the virus had caused 42 747 cases and 1017 deaths in China and cases have been reported in 25 countries, including the USA, Japan, and Spain. WHO has declared 2019 novel coronavirus disease (COVID-19), caused by SARS-CoV-2, a public health emergency of international concern. In contrast to severe acute respiratory system coronavirus and Middle East respiratory syndrome coronavirus, more deaths from COVID-19 have been caused by multiple organ dysfunction syndrome rather than respiratory failure, 2 which might be attributable to the widespread distribution of angiotensin converting enzyme 2—the functional receptor for SARS-CoV-2—in multiple organs.3, 4 Patients with cancer are more susceptible to infection than individuals without cancer because of their systemic immunosuppressive state caused by the malignancy and anticancer treatments, such as chemotherapy or surgery.5, 6, 7, 8 Therefore, these patients might be at increased risk of COVID-19 and have a poorer prognosis. On behalf of the National Clinical Research Center for Respiratory Disease, we worked together with the National Health Commission of the People's Republic of China to establish a prospective cohort to monitor COVID-19 cases throughout China. As of the data cutoff on Jan 31, 2020, we have collected and analysed 2007 cases from 575 hospitals (appendix pp 4–9 for a full list) in 31 provincial administrative regions. All cases were diagnosed with laboratory-confirmed COVID-19 acute respiratory disease and were admitted to hospital. We excluded 417 cases because of insufficient records of previous disease history. 18 (1%; 95% CI 0·61–1·65) of 1590 COVID-19 cases had a history of cancer, which seems to be higher than the incidence of cancer in the overall Chinese population (285·83 [0·29%] per 100 000 people, according to 2015 cancer epidemiology statistics 9 ). Detailed information about the 18 patients with cancer with COVID-19 is summarised in the appendix (p 1). Lung cancer was the most frequent type (five [28%] of 18 patients). Four (25%) of 16 patients (two of the 18 patients had unknown treatment status) with cancer with COVID-19 had received chemotherapy or surgery within the past month, and the other 12 (25%) patients were cancer survivors in routine follow-up after primary resection. Compared with patients without cancer, patients with cancer were older (mean age 63·1 years [SD 12·1] vs 48·7 years [16·2]), more likely to have a history of smoking (four [22%] of 18 patients vs 107 [7%] of 1572 patients), had more polypnea (eight [47%] of 17 patients vs 323 [23%] of 1377 patients; some data were missing on polypnea), and more severe baseline CT manifestation (17 [94%] of 18 patients vs 1113 [71%] of 1572 patients), but had no significant differences in sex, other baseline symptoms, other comorbidities, or baseline severity of x-ray (appendix p 2). Most importantly, patients with cancer were observed to have a higher risk of severe events (a composite endpoint defined as the percentage of patients being admitted to the intensive care unit requiring invasive ventilation, or death) compared with patients without cancer (seven [39%] of 18 patients vs 124 [8%] of 1572 patients; Fisher's exact p=0·0003). We observed similar results when the severe events were defined both by the above objective events and physician evaluation (nine [50%] of 18 patients vs 245 [16%] of 1572 patients; Fisher's exact p=0·0008). Moreover, patients who underwent chemotherapy or surgery in the past month had a numerically higher risk (three [75%] of four patients) of clinically severe events than did those not receiving chemotherapy or surgery (six [43%] of 14 patients; figure ). These odds were further confirmed by logistic regression (odds ratio [OR] 5·34, 95% CI 1·80–16·18; p=0·0026) after adjusting for other risk factors, including age, smoking history, and other comorbidities. Cancer history represented the highest risk for severe events (appendix p 3). Among patients with cancer, older age was the only risk factor for severe events (OR 1·43, 95% CI 0·97–2·12; p=0·072). Patients with lung cancer did not have a higher probability of severe events compared with patients with other cancer types (one [20%] of five patients with lung cancer vs eight [62%] of 13 patients with other types of cancer; p=0·294). Additionally, we used a Cox regression model to evaluate the time-dependent hazards of developing severe events, and found that patients with cancer deteriorated more rapidly than those without cancer (median time to severe events 13 days [IQR 6–15] vs 43 days [20–not reached]; p<0·0001; hazard ratio 3·56, 95% CI 1·65–7·69, after adjusting for age; figure). Figure Severe events in patients without cancer, cancer survivors, and patients with cancer (A) and risks of developing severe events for patients with cancer and patients without cancer (B) ICU=intensive care unit. In this study, we analysed the risk for severe COVID-19 in patients with cancer for the first time, to our knowledge; only by nationwide analysis can we follow up patients with rare but important comorbidities, such as cancer. We found that patients with cancer might have a higher risk of COVID-19 than individuals without cancer. Additionally, we showed that patients with cancer had poorer outcomes from COVID-19, providing a timely reminder to physicians that more intensive attention should be paid to patients with cancer, in case of rapid deterioration. Therefore, we propose three major strategies for patients with cancer in this COVID-19 crisis, and in future attacks of severe infectious diseases. First, an intentional postponing of adjuvant chemotherapy or elective surgery for stable cancer should be considered in endemic areas. Second, stronger personal protection provisions should be made for patients with cancer or cancer survivors. Third, more intensive surveillance or treatment should be considered when patients with cancer are infected with SARS-CoV-2, especially in older patients or those with other comorbidities.
                Bookmark

                Author and article information

                Contributors
                chun.eunyoung@gmail.com
                thylee@skku.edu
                Journal
                Cancer Commun (Lond)
                Cancer Commun (Lond)
                10.1002/(ISSN)2523-3548
                CAC2
                Cancer Communications
                John Wiley and Sons Inc. (Hoboken )
                2523-3548
                13 September 2023
                February 2024
                : 44
                : 2 ( doiID: 10.1002/cac2.v44.2 )
                : 273-277
                Affiliations
                [ 1 ] Department of Immunology Samsung Biomedical Research Institute Sungkyunkwan University School of Medicine Suwon Republic of Korea
                [ 2 ] Research and Development Center CHA Vaccine Institute Seongnam‐si Republic of Korea
                [ 3 ] Department of Molecular Cell Biology Sungkyunkwan University School of Medicine Suwon Republic of Korea
                [ 4 ] Department of Precision Medicine Sungkyunkwan University School of Medicine Suwon Republic of Korea
                [ 5 ] Department of Health Sciences and Technology Samsung Advanced Institute for Health Sciences & Technology Samsung Medical Center Sungkyunkwan University Seoul Republic of Korea
                Author notes
                [*] [* ] Correspondence

                Ki‐Young Lee, Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu‐ro, Jangan‐gu, Suwon, Gyeonggi‐do, 16419 Korea.

                Email: thylee@ 123456skku.edu

                Eunyoung Chun, Research and Development Center, CHA Vaccine Institute, 560 Dunchon‐daero, Jungwon‐gu, Seongnam‐si, Gyeonggi‐do, 13230 Korea.

                Email: chun.eunyoung@ 123456gmail.com

                Author information
                https://orcid.org/0000-0002-6722-1751
                Article
                CAC212485
                10.1002/cac2.12485
                10876188
                37702496
                3f5d740b-9042-4c98-bb03-e9f8edd9e217
                © 2023 The Authors. Cancer Communications published by John Wiley & Sons Australia, Ltd. on behalf of Sun Yat‐sen University Cancer Center.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 04 September 2023
                : 12 March 2023
                : 07 September 2023
                Page count
                Figures: 1, Tables: 0, Pages: 5, Words: 2567
                Funding
                Funded by: National Research Foundation of Korea , doi 10.13039/501100003725;
                Funded by: Korean Government
                Award ID: 2023R1A2C1003762
                Award ID: 2021R1A2C1094478
                Award ID: 2021M3A912080488
                Award ID: RS‐2023‐00217189
                Categories
                Letter to the Editor
                Letters to the Editor
                Custom metadata
                2.0
                February 2024
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.8 mode:remove_FC converted:19.02.2024

                Comments

                Comment on this article