13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA Methylation Manipulation of Memory Genes Is Involved in Sevoflurane Induced Cognitive Impairments in Aged Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA methylation is an essential epigenetic mechanism involving in gene transcription modulation. An age-related increase in promoter methylation has been observed for neuronal activity and memory genes, and participates in neurological disorders. However, the position and precise mechanism of DNA methylation for memory gene modulation in anesthesia related cognitive impairment remained to be determined. Here, we studied the effects of sevoflurane anesthesia on the transcription of memory genes in the aged rat hippocampus. Then, we investigated changes in DNA methylation of involved genes and verified whether dysregulated DNA methylation would contribute to anesthesia induced cognitive impairment. The results indicated that sevoflurane anesthesia down-regulated the mRNA and protein levels of three memory genes, Arc, Bdnf, and Reln, which were accompanied with promoter hypermethylation and increased Dnmt1, Dnmt3a, and Mecp2 expression, and finally impaired hippocampus dependent memory. Furthermore, inhibition of DNA hypermethylation by 5-Aza rescued sevoflurane induced memory gene expression decrease and cognitive impairment. These findings provide an epigenetic understanding for the pathophysiology of cognitive impairment induced by general anesthesia in aged brain.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy.

          5-Azacytidine was first synthesized almost 40 years ago. It was demonstrated to have a wide range of anti-metabolic activities when tested against cultured cancer cells and to be an effective chemotherapeutic agent for acute myelogenous leukemia. However, because of 5-azacytidine's general toxicity, other nucleoside analogs were favored as therapeutics. The finding that 5-azacytidine was incorporated into DNA and that, when present in DNA, it inhibited DNA methylation, led to widespread use of 5-azacytidine and 5-aza-2'-deoxycytidine (Decitabine) to demonstrate the correlation between loss of methylation in specific gene regions and activation of the associated genes. There is now a revived interest in the use of Decitabine as a therapeutic agent for cancers in which epigenetic silencing of critical regulatory genes has occurred. Here, the current status of our understanding of the mechanism(s) by which 5-azacytosine residues in DNA inhibit DNA methylation is reviewed with an emphasis on the interactions of these residues with bacterial and mammalian DNA (cytosine-C5) methyltransferases. The implications of these mechanistic studies for development of less toxic inhibitors of DNA methylation are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predictors of cognitive dysfunction after major noncardiac surgery.

            The authors designed a prospective longitudinal study to investigate the hypothesis that advancing age is a risk factor for postoperative cognitive dysfunction (POCD) after major noncardiac surgery and the impact of POCD on mortality in the first year after surgery. One thousand sixty-four patients aged 18 yr or older completed neuropsychological tests before surgery, at hospital discharge, and 3 months after surgery. Patients were categorized as young (18-39 yr), middle-aged (40-59 yr), or elderly (60 yr or older). At 1 yr after surgery, patients were contacted to determine their survival status. At hospital discharge, POCD was present in 117 (36.6%) young, 112 (30.4%) middle-aged, and 138 (41.4%) elderly patients. There was a significant difference between all age groups and the age-matched control subjects (P < 0.001). At 3 months after surgery, POCD was present in 16 (5.7%) young, 19 (5.6%) middle-aged, and 39 (12.7%) elderly patients. At this time point, the prevalence of cognitive dysfunction was similar between age-matched controls and young and middle-aged patients but significantly higher in elderly patients compared to elderly control subjects (P < 0.001). The independent risk factors for POCD at 3 months after surgery were increasing age, lower educational level, a history of previous cerebral vascular accident with no residual impairment, and POCD at hospital discharge. Patients with POCD at hospital discharge were more likely to die in the first 3 months after surgery (P = 0.02). Likewise, patients who had POCD at both hospital discharge and 3 months after surgery were more likely to die in the first year after surgery (P = 0.02). Cognitive dysfunction is common in adult patients of all ages at hospital discharge after major noncardiac surgery, but only the elderly (aged 60 yr or older) are at significant risk for long-term cognitive problems. Patients with POCD are at an increased risk of death in the first year after surgery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin.

              MeCP2 is an abundant mammalian protein that binds to methylated CpG. We have found that native and recombinant MeCP2 repress transcription in vitro from methylated promoters but do not repress nonmethylated promoters. Repression is nonlinearly dependent on the local density of methylation, becoming significant at the density found in bulk vertebrate genomic DNA. Transient transfection using fusions with the GAL4 DNA binding domain identified a region of MeCP2 that is capable of long-range repression in vivo. Moreover, MeCP2 is able to displace histone H1 from preassembled chromatin that contains methyl-CpG. These properties, together with the abundance of MeCP2 and the high frequency of its 2 bp binding site, suggest a role as a global transcriptional repressor in vertebrate genomes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                18 August 2020
                2020
                : 12
                : 211
                Affiliations
                [1] 1Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
                [2] 2Department of Anesthesiology, Peking University Third Hospital , Beijing, China
                Author notes

                Edited by: Yuan Shen, Tongji University, China

                Reviewed by: Jiaqiang Zhang, Zhengzhou University, China; Feng Liang, Massachusetts General Hospital, United States; Mian Peng, Wuhan University, China

                *Correspondence: Hui Zheng, zhenghui0715@ 123456hotmail.com
                Article
                10.3389/fnagi.2020.00211
                7461785
                33013350
                3f5a79db-a5e8-4f79-9139-fa71e9f4b88e
                Copyright © 2020 Ni, Qian, Geng, Qu, Tian, Yang, Li and Zheng.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 February 2020
                : 16 June 2020
                Page count
                Figures: 8, Tables: 2, Equations: 0, References: 71, Pages: 17, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81771146
                Award ID: 81970994
                Award ID: 81400869
                Categories
                Neuroscience
                Original Research

                Neurosciences
                dna methylation,epigenetic,anesthesia,memory gene,cognitive impairment
                Neurosciences
                dna methylation, epigenetic, anesthesia, memory gene, cognitive impairment

                Comments

                Comment on this article