2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Research trend of metal–organic frameworks: a bibliometric analysis

      ,
      Scientometrics
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references196

          • Record: found
          • Abstract: not found
          • Article: not found

          Design and synthesis of an exceptionally stable and highly porous metal-organic framework

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability.

              Porous crystals are strategic materials with industrial applications within petrochemistry, catalysis, gas storage, and selective separation. Their unique properties are based on the molecular-scale porous character. However, a principal limitation of zeolites and similar oxide-based materials is the relatively small size of the pores, typically in the range of medium-sized molecules, limiting their use in pharmaceutical and fine chemical applications. Metal organic frameworks (MOFs) provided a breakthrough in this respect. New MOFs appear at a high and an increasing pace, but the appearances of new, stable inorganic building bricks are rare. Here we present a new zirconium-based inorganic building brick that allows the synthesis of very high surface area MOFs with unprecedented stability. The high stability is based on the combination of strong Zr-O bonds and the ability of the inner Zr6-cluster to rearrange reversibly upon removal or addition of mu3-OH groups, without any changes in the connecting carboxylates. The weak thermal, chemical, and mechanical stability of most MOFs is probably the most important property that limits their use in large scale industrial applications. The Zr-MOFs presented in this work have the toughness needed for industrial applications; decomposition temperature above 500 degrees C and resistance to most chemicals, and they remain crystalline even after exposure to 10 tons/cm2 of external pressure.
                Bookmark

                Author and article information

                Journal
                Scientometrics
                Scientometrics
                Springer Science and Business Media LLC
                0138-9130
                1588-2861
                October 2016
                May 27 2016
                October 2016
                : 109
                : 1
                : 481-513
                Article
                10.1007/s11192-016-1986-2
                3f582a12-4351-4f12-b70a-7dbc440e379c
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article