29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adeno-Associated Virus Technologies and Methods for Targeted Neuronal Manipulation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell-type-specific expression of molecular tools and sensors is critical to construct circuit diagrams and to investigate the activity and function of neurons within the nervous system. Strategies for targeted manipulation include combinations of classical genetic tools such as Cre/loxP and Flp/FRT, use of cis-regulatory elements, targeted knock-in transgenic mice, and gene delivery by AAV and other viral vectors. The combination of these complex technologies with the goal of precise neuronal targeting is a challenge in the lab. This report will discuss the theoretical and practical aspects of combining current technologies and establish best practices for achieving targeted manipulation of specific cell types. Novel applications and tools, as well as areas for development, will be envisioned and discussed.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emerging Issues in AAV-Mediated In Vivo Gene Therapy

          In recent years, the number of clinical trials in which adeno-associated virus (AAV) vectors have been used for in vivo gene transfer has steadily increased. The excellent safety profile, together with the high efficiency of transduction of a broad range of target tissues, has established AAV vectors as the platform of choice for in vivo gene therapy. Successful application of the AAV technology has also been achieved in the clinic for a variety of conditions, including coagulation disorders, inherited blindness, and neurodegenerative diseases, among others. Clinical translation of novel and effective “therapeutic products” is, however, a long process that involves several cycles of iterations from bench to bedside that are required to address issues encountered during drug development. For the AAV vector gene transfer technology, several hurdles have emerged in both preclinical studies and clinical trials; addressing these issues will allow in the future to expand the scope of AAV gene transfer as a therapeutic modality for a variety of human diseases. In this review, we will give an overview on the biology of AAV vector, discuss the design of AAV-based gene therapy strategies for in vivo applications, and present key achievements and emerging issues in the field. We will use the liver as a model target tissue for gene transfer based on the large amount of data available from preclinical and clinical studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors.

            To decipher neural circuits underlying brain functions, viral tracers are widely applied to map input and output connectivity of neuronal populations. Despite the successful application of retrograde transsynaptic viruses for identifying presynaptic neurons of transduced neurons, analogous anterograde transsynaptic tools for tagging postsynaptically targeted neurons remain under development. Here, we discovered that adeno-associated viruses (AAV1 and AAV9) exhibit anterograde transsynaptic spread properties. AAV1-Cre from transduced presynaptic neurons effectively and specifically drives Cre-dependent transgene expression in selected postsynaptic neuronal targets, thus allowing axonal tracing and functional manipulations of the latter input-defined neuronal population. Its application in superior colliculus (SC) reveals that SC neuron subpopulations receiving corticocollicular projections from auditory and visual cortex specifically drive flight and freezing, two different types of defense behavior, respectively. Together with an intersectional approach, AAV-mediated anterograde transsynaptic tagging can categorize neurons by their inputs and molecular identity, and allow forward screening of distinct functional neural pathways embedded in complex brain circuits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses.

              Adeno-associated virus (AAV) serotypes differ broadly in transduction efficacies and tissue tropisms and thus hold enormous potential as vectors for human gene therapy. In reality, however, their use in patients is restricted by prevalent anti-AAV immunity or by their inadequate performance in specific targets, exemplified by the AAV type 2 (AAV-2) prototype in the liver. Here, we attempted to merge desirable qualities of multiple natural AAV isolates by an adapted DNA family shuffling technology to create a complex library of hybrid capsids from eight different wild-type viruses. Selection on primary or transformed human hepatocytes yielded pools of hybrids from five of the starting serotypes: 2, 4, 5, 8, and 9. More stringent selection with pooled human antisera (intravenous immunoglobulin [IVIG]) then led to the selection of a single type 2/type 8/type 9 chimera, AAV-DJ, distinguished from its closest natural relative (AAV-2) by 60 capsid amino acids. Recombinant AAV-DJ vectors outperformed eight standard AAV serotypes in culture and greatly surpassed AAV-2 in livers of naïve and IVIG-immunized mice. A heparin binding domain in AAV-DJ was found to limit biodistribution to the liver (and a few other tissues) and to affect vector dose response and antibody neutralization. Moreover, we report the first successful in vivo biopanning of AAV capsids by using a new AAV-DJ-derived viral peptide display library. Two peptides enriched after serial passaging in mouse lungs mediated the retargeting of AAV-DJ vectors to distinct alveolar cells. Our study validates DNA family shuffling and viral peptide display as two powerful and compatible approaches to the molecular evolution of novel AAV vectors for human gene therapy applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neuroanat
                Front Neuroanat
                Front. Neuroanat.
                Frontiers in Neuroanatomy
                Frontiers Media S.A.
                1662-5129
                26 November 2019
                2019
                : 13
                : 93
                Affiliations
                [1] 1Addgene , Watertown, MA, United States
                [2] 2Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard , Cambridge, MA, United States
                [3] 3Cold Spring Harbor Laboratory , Cold Spring Harbor, NY, United States
                [4] 4Allen Institute for Brain Science , Seattle, WA, United States
                [5] 5Penn Vector Core, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, United States
                [6] 6Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute , Boston, MA, United States
                [7] 7Department of Ophthalmology, Harvard Medical School, Howard Hughes Medical Institute , Boston, MA, United States
                Author notes

                Edited by: Jose L. Lanciego, University of Navarra, Spain

                Reviewed by: Els Henckaerts, KU Leuven, Belgium; Akiya Watakabe, RIKEN Center for Brain Science (CBS), Japan

                *Correspondence: Melina Fan mfan@ 123456addgene.org
                Article
                10.3389/fnana.2019.00093
                6902037
                31849618
                3f565ac0-843c-436d-bcdf-e9491fd2134d
                Copyright © 2019 Haery, Deverman, Matho, Cetin, Woodard, Cepko, Guerin, Rego, Ersing, Bachle, Kamens and Fan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 August 2019
                : 30 October 2019
                Page count
                Figures: 2, Tables: 7, Equations: 0, References: 135, Pages: 16, Words: 12477
                Categories
                Neuroscience
                Review

                Neurosciences
                aav,neuroscience,viral vectors,cell-type specificity,gene delivery,intersectional methods,targeted neuronal manipulation,virus technologies

                Comments

                Comment on this article