7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EEG Microstates Analysis in Young Adults With Autism Spectrum Disorder During Resting-State

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electroencephalography (EEG) is a useful tool to inspect the brain activity in resting state and allows to characterize spontaneous brain activity that is not detected when a subject is cognitively engaged. Moreover, taking advantage of the high time resolution in EEG, it is possible to perform fast topographical reference-free analysis, since different scalp potential fields correspond to changes in the underlying sources within the brain. In this study, the spontaneous EEG resting state (eyes closed) was compared between 10 young adults ages 18–30 years with autism spectrum disorder (ASD) and 13 neurotypical controls. A microstate analysis was applied, focusing on four temporal parameters: mean duration, the frequency of occurrence, the ratio of time coverage, and the global explained variance (GEV). Using data that were acquired from a 65-channel EEG system, six resting-state topographies that best describe the dataset across all subjects were identified by running a two-step cluster analysis labeled as microstate classes A–F. The results indicated that microstates B and E displayed statistically significant differences between both groups among the temporal parameters evaluated. Classes B, D, E, and F were consistently more present in ASD, and class C in controls. The combination of these findings with the putative functional significance of the different classes suggests that during resting state, the ASD group was more focused on visual scene reconstruction, while the control group was more engaged with self-memory retrieval. Furthermore, from a connectivity perspective, the resting-state networks that have been previously associated with each microstate class overlap the brain regions implicated in impaired social communication and repetitive behaviors that characterize ASD.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Removing electroencephalographic artifacts by blind source separation.

          Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroencephalographic (EEG) interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from eye movements and blinks. Often regression in the time or frequency domain is performed on parallel EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. Because EEG and ocular activity mix bidirectionally, regressing out eye artifacts inevitably involves subtracting relevant EEG signals from each record as well. Regression methods become even more problematic when a good regressing channel is not available for each artifact source, as in the case of muscle artifacts. Use of principal component analysis (PCA) has been proposed to remove eye artifacts from multichannel EEG. However, PCA cannot completely separate eye artifacts from brain signals, especially when they have comparable amplitudes. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records based on blind source separation by independent component analysis (ICA). Our results on EEG data collected from normal and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA methods. ICA can also be used to analyze blink-related brain activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BOLD correlates of EEG topography reveal rapid resting-state network dynamics.

            Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into large-scale functional networks for which the hemodynamic signature is stable for about 10s. Spatial analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states (so-called microstates), but they remain quasi-stationary for only about 100 ms. In order to test the relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated across all subjects. The convolution of the time course of these maps with the hemodynamic response function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective interoceptive-autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests. Copyright 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EEG alpha map series: brain micro-states by space-oriented adaptive segmentation.

              The spontaneous EEG, viewed as a series of momentary scalp field maps, shows stable map configurations (of periodically reversed polarity) for varying durations, and discontinuous changes of the configurations. For adaptive segmentation of map series into spatially stationary epochs, the maps at the times of maximal map relief are selected and spatially described by the two locations of maximal and minimal (extreme) potentials; a segment ends if over time an extreme leaves its pre-set spatial window. Over 6 subjects, the resting alpha EEG showed 210 msec mean segment duration; segments longer than 323 msec covered 50% of the total time; the most prominent segment class (1.5% of all classes) covered 20% of total time (prominence varied strongly over classes; not all possible classes occurred). Spectral power and phase of averages of adaptive and pre-determined segments demonstrated the adequacy of the strategy, and the homogeneity of adaptive segment classes by their reduced within-class variance. It is suggested that different segment classes manifest different brain functional states exerting different effects on information processing. The spatially stationary segments might be basic building blocks of brain information processing, possibly operationalizing consciousness time and offering a common phenomenology for spontaneous activity and event-related potentials. The functional significance of segments might be modes or steps of information processing or performance, tested, e.g., as reaction time.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                12 June 2019
                2019
                : 13
                : 173
                Affiliations
                [1] 1Autumn’s Dawn Neuroimaging, Cognition, and Engineering Laboratory, Department of Electrical and Computer Engineering, Texas Tech University , Lubbock, TX, United States
                [2] 2Functional Brain Mapping Laboratory, Department of Basic Neuroscience, Faculty of Medicine, University of Geneva , Geneva, Switzerland
                [3] 3Department of Electrical and Computer Engineering, Texas Tech University , Lubbock, TX, United States
                Author notes

                Edited by: Filippo Brighina, University of Palermo, Italy

                Reviewed by: Stavros I. Dimitriadis, Cardiff University School of Medicine, United Kingdom; Antonio Ivano Triggiani, University of Foggia, Italy

                *Correspondence: David F. D’Croz-Baron, david.dcroz-baron@ 123456ttu.edu
                Article
                10.3389/fnhum.2019.00173
                6581708
                31244624
                3f4a856a-d0dd-4762-8377-0dc09637bf08
                Copyright © 2019 D’Croz-Baron, Baker, Michel and Karp.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 February 2019
                : 13 May 2019
                Page count
                Figures: 2, Tables: 1, Equations: 2, References: 43, Pages: 9, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                eeg microstates,autism spectrum disorder,resting state,topographical analysis,electroencephalography

                Comments

                Comment on this article