13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bile acids as modulators of gut microbiota composition and function

      review-article
      , ,
      Gut Microbes
      Taylor & Francis
      Bile acids, microbiome, intestinal homeostasis, colonization resistance

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Changes in the composition of gut-associated microbial communities are associated with many human illnesses, but the factors driving dysbiosis remain incompletely understood. One factor governing the microbiota composition in the gut is bile. Bile acids shape the microbiota composition through their antimicrobial activity and by activating host signaling pathways that maintain gut homeostasis. Although bile acids are host-derived, their functions are integrally linked to bacterial metabolism, which shapes the composition of the intestinal bile acid pool. Conditions that change the size or composition of the bile acid pool can trigger alterations in the microbiota composition that exacerbate inflammation or favor infection with opportunistic pathogens. Therefore, manipulating the composition or size of the bile acid pool might be a promising strategy to remediate dysbiosis.

          Related collections

          Most cited references194

          • Record: found
          • Abstract: found
          • Article: not found

          From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.

          A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Revised Estimates for the Number of Human and Bacteria Cells in the Body

            Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiota, metabolites and host immunity.

              The microbiota - the collection of microorganisms that live within and on all mammals - provides crucial signals for the development and function of the immune system. Increased availability of technologies that profile microbial communities is facilitating the entry of many immunologists into the evolving field of host-microbiota studies. The microbial communities, their metabolites and components are not only necessary for immune homeostasis, they also influence the susceptibility of the host to many immune-mediated diseases and disorders. In this Review, we discuss technological and computational approaches for investigating the microbiome, as well as recent advances in our understanding of host immunity and microbial mutualism with a focus on specific microbial metabolites, bacterial components and the immune system.
                Bookmark

                Author and article information

                Journal
                Gut Microbes
                Gut Microbes
                Gut Microbes
                Taylor & Francis
                1949-0976
                1949-0984
                5 February 2023
                2023
                5 February 2023
                : 15
                : 1
                : 2172671
                Affiliations
                [0001]Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis; , Davis, CA, USA
                Author notes
                CONTACT Andreas J. Bäumler ajbaumler@ 123456ucdavis.edu Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis; , Davis CA 95616, USA
                Article
                2172671
                10.1080/19490976.2023.2172671
                9904317
                36740850
                3f472df3-4252-4e0e-a3b7-fa4f1f75234b
                © 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 5, References: 194, Pages: 1
                Categories
                Review
                Review

                Microbiology & Virology
                bile acids,microbiome,intestinal homeostasis,colonization resistance
                Microbiology & Virology
                bile acids, microbiome, intestinal homeostasis, colonization resistance

                Comments

                Comment on this article