7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advance Warning Methodologies for COVID-19 Using Chest X-Ray Images

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronavirus disease 2019 (COVID-19) has rapidly become a global health concern after its first known detection in December 2019. As a result, accurate and reliable advance warning system for the early diagnosis of COVID-19 has now become a priority. The detection of COVID-19 in early stages is not a straightforward task from chest X-ray images according to expert medical doctors because the traces of the infection are visible only when the disease has progressed to a moderate or severe stage. In this study, our first aim is to evaluate the ability of recent state-of-the-art Machine Learning techniques for the early detection of COVID-19 from chest X-ray images. Both compact classifiers and deep learning approaches are considered in this study. Furthermore, we propose a recent compact classifier, Convolutional Support Estimator Network (CSEN) approach for this purpose since it is well-suited for a scarce-data classification task. Finally, this study introduces a new benchmark dataset called Early-QaTa-COV19, which consists of 1065 early-stage COVID-19 pneumonia samples (very limited or no infection signs) labeled by the medical doctors and 12544 samples for control (normal) class. A detailed set of experiments shows that the CSEN achieves the top (over 97%) sensitivity with over 95.5% specificity. Moreover, DenseNet-121 network produces the leading performance among other deep networks with 95% sensitivity and 99.74% specificity.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases

          Background Chest CT is used for diagnosis of 2019 novel coronavirus disease (COVID-19), as an important complement to the reverse-transcription polymerase chain reaction (RT-PCR) tests. Purpose To investigate the diagnostic value and consistency of chest CT as compared with comparison to RT-PCR assay in COVID-19. Methods From January 6 to February 6, 2020, 1014 patients in Wuhan, China who underwent both chest CT and RT-PCR tests were included. With RT-PCR as reference standard, the performance of chest CT in diagnosing COVID-19 was assessed. Besides, for patients with multiple RT-PCR assays, the dynamic conversion of RT-PCR results (negative to positive, positive to negative, respectively) was analyzed as compared with serial chest CT scans for those with time-interval of 4 days or more. Results Of 1014 patients, 59% (601/1014) had positive RT-PCR results, and 88% (888/1014) had positive chest CT scans. The sensitivity of chest CT in suggesting COVID-19 was 97% (95%CI, 95-98%, 580/601 patients) based on positive RT-PCR results. In patients with negative RT-PCR results, 75% (308/413) had positive chest CT findings; of 308, 48% were considered as highly likely cases, with 33% as probable cases. By analysis of serial RT-PCR assays and CT scans, the mean interval time between the initial negative to positive RT-PCR results was 5.1 ± 1.5 days; the initial positive to subsequent negative RT-PCR result was 6.9 ± 2.3 days). 60% to 93% of cases had initial positive CT consistent with COVID-19 prior (or parallel) to the initial positive RT-PCR results. 42% (24/57) cases showed improvement in follow-up chest CT scans before the RT-PCR results turning negative. Conclusion Chest CT has a high sensitivity for diagnosis of COVID-19. Chest CT may be considered as a primary tool for the current COVID-19 detection in epidemic areas. A translation of this abstract in Farsi is available in the supplement. - ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adam: A Method for Stochastic Optimization

            We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm. Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR

              Summary In a series of 51 patients with chest CT and RT-PCR assay performed within 3 days, the sensitivity of CT for COVID-19 infection was 98% compared to RT-PCR sensitivity of 71% (p<.001). Introduction In December 2019, an outbreak of unexplained pneumonia in Wuhan [1] was caused by a new coronavirus infection named COVID-19 (Corona Virus Disease 2019). Noncontrast chest CT may be considered for early diagnosis of viral disease, although viral nucleic acid detection using real-time polymerase chain reaction (RT-PCR) remains the standard of reference. Chung et al. reported that chest CT may be negative for viral pneumonia of COVID-19 [2] at initial presentation (3/21 patients). Recently, Xie reported 5/167 (3%) patients who had negative RT-PCR for COVID-19 at initial presentation despite chest CT findings typical of viral pneumonia [3]. The purpose of this study was to compare the sensitivity of chest CT and viral nucleic acid assay at initial patient presentation. Materials and Methods The retrospective analysis was approved by institutional review board and patient consent was waived. Patients at Taizhou Enze Medical Center (Group) Enze Hospital were evaluated from January 19, 2020 to February 4, 2020. During this period, chest CT and RT-PCR (Shanghai ZJ Bio-Tech Co, Ltd, Shanghai, China) was performed for consecutive patients who presented with a history of 1) travel or residential history in Wuhan or local endemic areas or contact with individuals with individuals with fever or respiratory symptoms from these areas within 14 days and 2) had fever or acute respiratory symptoms of unknown cause. In the case of an initial negative RT-PCR test, repeat testing was performed at intervals of 1 day or more. Of these patients, we included all patients who had both noncontrast chest CT scan (slice thickness, 5mm) and RT-PCR testing within an interval of 3 days or less and who had an eventual confirmed diagnosis of COVID-19 infection by RT-PCR testing (Figure 1). Typical and atypical chest CT findings were recorded according to CT features previously described for COVD-19 (4,5). The detection rate of COVID-19 infection based on the initial chest CT and RT-PCR was compared. Statistical analysis was performed using McNemar Chi-squared test with significance at the p <.05 level. Figure 1: Flowchart for patient inclusion. Results 51 patients (29 men and 22 women) were included with median age of 45 (interquartile range, 39- 55) years. All patients had throat swab (45 patients) or sputum samples (6 patients) followed by one or more RT-PCR assays. The average time from initial disease onset to CT was 3 +/- 3 days; the average time from initial disease onset to RT-PCR testing was 3 +/- 3 days. 36/51 patients had initial positive RT-PCR for COVID-19. 12/51 patients had COVID-19 confirmed by two RT-PCR nucleic acid tests (1 to 2 days), 2 patients by three tests (2-5 days) and 1 patient by four tests (7 days) after initial onset. 50/51 (98%) patients had evidence of abnormal CT compatible with viral pneumonia at baseline while one patient had a normal CT. Of 50 patients with abnormal CT, 36 (72%) had typical CT manifestations (e.g. peripheral, subpleural ground glass opacities, often in the lower lobes (Figure 2) and 14 (28%) had atypical CT manifestations (Figure 3) [2]. In this patient sample, difference in detection rate for initial CT (50/51 [98%, 95% CI 90-100%]) patients was greater than first RT-PCR (36/51 [71%, 95%CI 56-83%]) patients (p<.001). Figure 2a: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 2b: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 2c: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 2d: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 3a: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Figure 3b: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Figure 3c: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Figure 3d: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Discussion In our series, the sensitivity of chest CT was greater than that of RT-PCR (98% vs 71%, respectively, p<.001). The reasons for the low efficiency of viral nucleic acid detection may include: 1) immature development of nucleic acid detection technology; 2) variation in detection rate from different manufacturers; 3) low patient viral load; or 4) improper clinical sampling. The reasons for the relatively lower RT-PCR detection rate in our sample compared to a prior report are unknown (3). Our results support the use of chest CT for screening for COVD-19 for patients with clinical and epidemiologic features compatible with COVID-19 infection particularly when RT-PCR testing is negative.
                Bookmark

                Author and article information

                Contributors
                Journal
                IEEE Access
                IEEE Access
                0063500
                ACCESS
                IAECCG
                Ieee Access
                IEEE
                2169-3536
                2021
                09 March 2021
                : 9
                : 41052-41065
                Affiliations
                [1] divisionFaculty of Information Technology and Communication Sciences, institutionTampere University, institutionringgold 7840; 33720 Tampere Finland
                [2] departmentDepartment of Electrical Engineering, institutionQatar University, institutionringgold 61780; Doha 2713 Qatar
                [3] institutionReem Medical Center; Doha 46031 Qatar
                [4] institutionHamad Medical Corporation Hospital; Doha 57621 Qatar
                [5] institutionWeill Cornell Medicine-Qatar; Doha 24144 Qatar
                Article
                10.1109/ACCESS.2021.3064927
                8768954
                36789157
                3f40f4f1-b43f-4fc9-9282-c791d0c205d5
                This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

                This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

                History
                : 22 February 2021
                : 03 March 2021
                : 18 March 2021
                Page count
                Figures: 8, Tables: 5, Equations: 181, References: 62, Pages: 14
                Funding
                Funded by: Academy of Finland’s Project AWcHA, fundref 10.13039/501100002341;
                Award ID: Dn 334566
                This work was supported by the Academy of Finland’s Project AWcHA, under Grant Dn 334566.
                Categories
                Computational and Artificial Intelligence
                Signal Processing

                covid-19 detection in early stages,deep learning,machine learning,representation based classification

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content236

                Cited by10

                Most referenced authors1,470