8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular surveillance of tuberculosis-causing mycobacteria in wastewater

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The surveillance of tuberculosis infections has largely depended on clinical diagnostics and hospitalization data. The advancement in molecular methods creates an opportunity for the adoption of alternative surveillance systems, such as wastewater-based epidemiology. This study presents the use of conventional and advanced polymerase chain reaction techniques (droplet digital PCR) to determine the occurrence and concentration of total mycobacteria and members of the Mycobacterium tuberculosis complex (MTBC) in treated and untreated wastewater. Wastewater samples were taken from three wastewater treatment plants (WWTPs) in the city of Durban, South Africa, known for a high burden of TB/MDR-TB due to HIV infections. All untreated wastewater samples contained total mycobacteria and MTBC at varying percentages per WWTP studied. Other members of the MTBC related to tuberculosis infection in animals, M. bovis and M. caprae were also detected. The highest median concentration detected in untreated wastewater was up to 4.9 (±0.2) Log10 copies/ml for total mycobacteria, 4.0 (±0.85) Log10 copies/ml for MTBC, 3.9 (±0.54) Log10 copies/ml for M. tuberculosis, 2.7 (±0.42) Log10 copies/ml for M. africanum, 4.0 (±0.29) Log10 copies/ml for M. bovis and 4.5 (±0.52) Log10 copies/ml for M. caprae. Lower concentrations were detected in the treated wastewater, with a statistically significant difference (P-value ≤ 0.05) in concentrations observed. The log reduction achieved for these bacteria in the respective WWTPs was not statistically different, indicating that the treatment configuration did not have an impact on their removal. The detection of M. africanum in wastewater from South Africa shows that it is possible that some of the TB infections in the community could be caused by this mycobacterium. This study, therefore, highlights the potential of wastewater-based epidemiology for monitoring tuberculosis infections.

          Abstract

          Tuberculosis; Mycobacteria; Mycobacterium tuberculosis complex; Wastewater; Droplet digital PCR.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community

          Infection with SARS-CoV-2, the etiologic agent of the ongoing COVID-19 pandemic, is accompanied by the shedding of the virus in stool. Therefore, the quantification of SARS-CoV-2 in wastewater affords the ability to monitor the prevalence of infections among the population via wastewater-based epidemiology (WBE). In the current work, SARS-CoV-2 RNA was concentrated from wastewater in a catchment in Australia and viral RNA copies were enumerated using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) resulting in two positive detections within a six day period from the same wastewater treatment plant (WWTP). The estimated RNA copy numbers observed in the wastewater were then used to estimate the number of infected individuals in the catchment via Monte Carlo simulation. Given the uncertainty and variation in the input parameters, the model estimated a median range of 171 to 1090 infected persons in the catchment, which is in reasonable agreement with clinical observations. This work highlights the viability of WBE for monitoring infectious diseases, such as COVID-19, in communities. The work also draws attention to the need for further methodological and molecular assay validation for enveloped viruses in wastewater.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 in wastewater: State of the knowledge and research needs

            The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a Public Health Emergency of International Concern, which was officially declared by the World Health Organization. SARS-CoV-2 is a member of the family Coronaviridae that consists of a group of enveloped viruses with single-stranded RNA genome, some of which have been known to cause common colds. Although the major transmission routes of SARS-CoV-2 are inhalation from person-to-person and aerosol/droplet transmission, currently available evidence indicates that the viral RNA is present in wastewater, suggesting the need to better understand wastewater as potential sources of epidemiological data and human health risks. Here, we review the current knowledge related to the potential of wastewater surveillance to understand the epidemiology of COVID-19, methodologies for the detection and quantification of SARS-CoV-2 in wastewater, and information relevant for human health risk assessment of SARS-CoV-2. There has been growing evidence of gastrointestinal symptoms caused by SARS-CoV-2 infections and the presence of viral RNA not only in feces of COVID-19 patients but in wastewater. One of the major challenges in SARS-CoV-2 detection/quantification in wastewater samples is the lack of an optimized and standardized protocol. Currently available data are also limited for conducting a quantitative microbial risk assessment (QMRA) for SARS-CoV-2 exposure pathways. However, modeling-based approaches have a potential role to play in reducing the impact of the ongoing COVID-19 outbreak, and QMRA parameters obtained from previous studies on relevant respiratory viruses help to inform risk assessments of SARS-CoV-2. Our understanding on the potential role of wastewater in SARS-CoV-2 transmission is largely limited by knowledge gaps in its occurrence, persistence, and removal in wastewater. There is an urgent need for further research to establish methodologies for wastewater surveillance and understand the implications of the presence of SARS-CoV-2 in wastewater.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges

              With the economic and practical limits of medical screening for SARS-CoV-2/COVID-19 coming sharply into focus worldwide, scientists are turning now to wastewater-based epidemiology (WBE) as a potential tool for assessing and managing the pandemic. We employed computational analysis and modeling to examine the feasibility, economy, opportunities and challenges of enumerating active coronavirus infections locally and globally using WBE. Depending on local conditions, detection in community wastewater of one symptomatic/asymptomatic infected case per 100 to 2,000,000 non-infected people is theoretically feasible, with some practical successes now being reported from around the world. Computer simulations for past, present and emerging epidemic hotspots (e.g., Wuhan, Milan, Madrid, New York City, Teheran, Seattle, Detroit and New Orleans) identified temperature, average in-sewer travel time and per-capita water use as key variables. WBE surveillance of populations is shown to be orders of magnitude cheaper and faster than clinical screening, yet cannot fully replace it. Cost savings worldwide for one-time national surveillance campaigns are estimated to be in the million to billion US dollar range (US$), depending on a nation's population size and number of testing rounds conducted. For resource poor regions and nations, WBE may represent the only viable means of effective surveillance. Important limitations of WBE rest with its inability to identify individuals and to pinpoint their specific locations. Not compensating for temperature effects renders WBE data vulnerable to severe under-/over-estimation of infected cases. Effective surveillance may be envisioned as a two-step process in which WBE serves to identify and enumerate infected cases, where after clinical testing then serves to identify infected individuals in WBE-revealed hotspots. Data provided here demonstrate this approach to save money, be broadly applicable worldwide, and potentially aid in precision management of the pandemic, thereby helping to accelerate the global economic recovery that billions of people rely upon for their livelihoods.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                04 February 2022
                February 2022
                04 February 2022
                : 8
                : 2
                : e08910
                Affiliations
                [a ]Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
                [b ]Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
                Author notes
                []Corresponding author. PoovieR@ 123456dut.ac.za
                Article
                S2405-8440(22)00198-0 e08910
                10.1016/j.heliyon.2022.e08910
                8842018
                35198775
                3f396048-1106-4a9d-b188-05be21c12854
                © 2022 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 9 August 2021
                : 31 December 2021
                : 2 February 2022
                Categories
                Research Article

                tuberculosis,mycobacteria,mycobacterium tuberculosis complex,wastewater,droplet digital pcr

                Comments

                Comment on this article