12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Casimir effect of an ideal Bose gas trapped in a generic power-law potential

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Casimir effect of an ideal Bose gas trapped in a generic power-law potential and confined between two slabs with Dirichlet, Neumann, and periodic boundary conditions is investigated systematically, based on the grand potential of the ideal Bose gas, the Casimir potential and force are calculated. The scaling function is obtained and discussed. The special cases of free and harmonic potentials are also discussed. It is found that when T<Tc (where Tc is the critical temperature of Bose-Einstein condensation), the Casimir force is a power-law decay function; when T>Tc, the Casimir force is an exponential decay function; and when T>>Tc, the Casimir force vanishes.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Casimir effect: from quantum to critical fluctuations

          The Casimir effect in quantum electrodynamics (QED) is perhaps the best-known example of fluctuation-induced long-ranged force acting on objects (conducting plates) immersed in a fluctuating medium (quantum electromagnetic field in vacuum). A similar effect emerges in statistical physics, where the force acting, e.g., on colloidal particles immersed in a binary liquid mixture is affected by the classical thermal fluctuations occurring in the surrounding medium. The resulting Casimir-like force acquires universal features upon approaching a critical point of the medium and becomes long-ranged at criticality. In turn, this universality allows one to investigate theoretically the temperature dependence of the force via representative models and to stringently test the corresponding predictions in experiments. In contrast to QED, the Casimir force resulting from critical fluctuations can be easily tuned with respect to strength and sign by surface treatments and temperature control. We present some recent advances in the theoretical study of the universal properties of the critical Casimir force arising in thin films. The corresponding predictions compare very well with the experimental results obtained for wetting layers of various fluids. We discuss how the Casimir force between a colloidal particle and a planar wall immersed in a binary liquid mixture has been measured with femto-Newton accuracy, comparing these experimental results with the corresponding theoretical predictions.
            Bookmark

            Author and article information

            Journal
            15 September 2012
            Article
            10.1209/0295-5075/98/40010
            1209.3392
            3f1f9861-b680-4e8d-9352-d748d804cb9e

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            History
            Custom metadata
            Europhys. Lett. 98, 40010 (2012)
            5 pages, 1 figure
            cond-mat.stat-mech

            Comments

            Comment on this article