0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantifying the role of variability in future intensification of heat extremes

      research-article
      ,
      Nature Communications
      Nature Publishing Group UK
      Projection and prediction, Natural hazards

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heat extremes have grown disproportionately since the advent of industrialization and are expected to intensify further under unabated greenhouse warming, spreading unevenly across the globe. However, amplification mechanisms are highly uncertain because of the complex interplay between regional physical responses to human forcing and the statistical properties of atmospheric temperatures. Here, focusing on the latter, we explain how and to what extent the leading moments of thermal distributions sway the future trajectories of heat extremes. Crucially, we show that daily temperature variability is the key to understanding global patterns of change in the frequency and severity of the extremes and their exacerbation in many places. Variability accounts for at least half of the highly differential regional sensitivities and may well outweigh the background warming. These findings provide fundamental insights for assessing the reliability of climate models and improving their future projections.

          Abstract

          Heat extremes have been growing at staggering rates with global warming. This study shows that temperature variability is key to explaining the highly heterogeneous trajectories of future extremes and their rapid intensification in many regions.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization

          By coordinating the design and distribution of global climate model simulations of the past, current, and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP historical simulations (1850–near present) that will maintain continuity and help document basic characteristics of models across different phases of CMIP; (2) common standards, coordination, infrastructure, and documentation that will facilitate the distribution of model outputs and the characterization of the model ensemble; and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects (MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and CMIP historical simulations to address a large range of specific questions and fill the scientific gaps of the previous CMIP phases. The DECK and CMIP historical simulations, together with the use of CMIP data standards, will be the entry cards for models participating in CMIP. Participation in CMIP6-Endorsed MIPs by individual modelling groups will be at their own discretion and will depend on their scientific interests and priorities. With the Grand Science Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three broad questions: – How does the Earth system respond to forcing? – What are the origins and consequences of systematic model biases? – How can we assess future climate changes given internal climate variability, predictability, and uncertainties in scenarios? This CMIP6 overview paper presents the background and rationale for the new structure of CMIP, provides a detailed description of the DECK and CMIP6 historical simulations, and includes a brief introduction to the 21 CMIP6-Endorsed MIPs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Increasing trends in regional heatwaves

              Heatwaves have increased in intensity, frequency and duration, with these trends projected to worsen under enhanced global warming. Understanding regional heatwave trends has critical implications for the biophysical and human systems they impact. Until now a comprehensive assessment of regional observed changes was hindered by the range of metrics employed, underpinning datasets, and time periods examined. Here, using the Berkeley Earth temperature dataset and key heatwave metrics, we systematically examine regional and global observed heatwave trends. In almost all regions, heatwave frequency demonstrates the most rapid and significant change. A measure of cumulative heat shows significant increases almost everywhere since the 1950s, mainly driven by heatwave days. Trends in heatwave frequency, duration and cumulative heat have accelerated since the 1950s, and due to the high influence of variability we recommend regional trends are assessed over multiple decades. Our results provide comparable regional observed heatwave trends, on spatial and temporal scales necessary for understanding impacts.
                Bookmark

                Author and article information

                Contributors
                c.simolo@isac.cnr.it
                s.corti@isac.cnr.it
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                24 December 2022
                24 December 2022
                2022
                : 13
                : 7930
                Affiliations
                GRID grid.435667.5, ISNI 0000 0000 9466 4203, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, ; I-40129 Bologna, Italy
                Author information
                http://orcid.org/0000-0003-3634-1934
                http://orcid.org/0000-0003-4456-6682
                Article
                35571
                10.1038/s41467-022-35571-0
                9790021
                36566208
                3ef11f14-9a80-4387-b3c6-5e239e0f7cb5
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 April 2022
                : 9 December 2022
                Funding
                Funded by: Italian Ministry of Education, University and Research (MIUR) through the JPI Oceans and JPI Climate “Next Generation Climate Science in Europe for Oceans”—ROADMAP Project (D. M. 593/2016); European Union’s Horizon 2020 research and innovation program under grant agreements No.820970 (TiPES).
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                projection and prediction,natural hazards
                Uncategorized
                projection and prediction, natural hazards

                Comments

                Comment on this article