We develop a method that identifies the attention paid by earnings call participants to firms' climate change exposures. The method adapts a machine learning keyword discovery algorithm and captures exposures related to opportunity, physical, and regulatory shocks associated with climate change. The measures are available for more than 10,000 firms from 34 countries between 2002 and 2020. We show that the measures are useful in predicting important real outcomes related to the net‐zero transition, in particular, job creation in disruptive green technologies and green patenting, and that they contain information that is priced in options and equity markets.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.