9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.

          Related collections

          Most cited references237

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          How mitochondria produce reactive oxygen species

          The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2 •−) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2 •− production within the matrix of mammalian mitochondria. The flux of O2 •− is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2 •− production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Δp (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Δp and NADH/NAD+ ratio, the extent of O2 •− production is far lower. The generation of O2 •− within the mitochondrial matrix depends critically on Δp, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2 •− generation by mitochondria in vivo from O2 •−-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2 •− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human epicardial adipose tissue is a source of inflammatory mediators.

            Inflammatory mediators that originate in vascular and extravascular tissues promote coronary lesion formation. Adipose tissue may function as an endocrine organ that contributes to an inflammatory burden in patients at risk of cardiovascular complications. In this study, we sought to compare expression of inflammatory mediators in epicardial and subcutaneous adipose stores in patients with critical CAD. Paired samples of epicardial and subcutaneous adipose tissues were harvested at the outset of elective CABG surgery (n=42; age 65+/-10 years). Local expression of chemokine (monocyte chemotactic protein [MCP]-1) and inflammatory cytokines (interleukin [IL]-1beta, IL-6, and tumor necrosis factor [TNF]-alpha) was analyzed by TaqMan real-time reverse transcription-polymerase chain reaction (mRNA) and by ELISA (protein release over 3 hours). Significantly higher levels of IL-1beta, IL-6, MCP-1, and TNF-alpha mRNA and protein were observed in epicardial adipose stores. Proinflammatory properties of epicardial adipose tissue were noted irrespective of clinical variables (diabetes, body mass index, and chronic use of statins or ACE inhibitors/angiotensin II receptor blockers) or plasma concentrations of circulating biomarkers. In a subset of samples (n=11), global gene expression was explored by DNA microarray hybridization and confirmed the presence of a broad inflammatory reaction in epicardial adipose tissue in patients with coronary artery disease. The above findings were paralleled by the presence of inflammatory cell infiltrates in epicardial adipose stores. Epicardial adipose tissue is a source of several inflammatory mediators in high-risk cardiac patients. Plasma inflammatory biomarkers may not adequately reflect local tissue inflammation. Current therapies do not appear to eliminate local inflammatory signals in epicardial adipose tissue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell biology of ischemia/reperfusion injury.

              Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                American Journal of Physiology-Heart and Circulatory Physiology
                American Journal of Physiology-Heart and Circulatory Physiology
                American Physiological Society
                0363-6135
                1522-1539
                May 01 2022
                May 01 2022
                : 322
                : 5
                : H819-H841
                Affiliations
                [1 ]Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
                [2 ]Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
                Article
                10.1152/ajpheart.00603.2021
                35333122
                3ecdf85b-d223-4cfb-a745-a9e6c851f155
                © 2022
                History

                Comments

                Comment on this article