0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ensiling characteristics, in vitro digestibility and bacterial community structure of mulberry leaf silage with or without the addition of cellulase, protease, and starch

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          This study aimed to investigate the effects of cellulase, protease, and starch on the fermentation quality, in vitro digestibility, and microbial community of mulberry leaf silage after 30d of ensiling.

          Methods

          Mulberry leaves (376 g/kg dry matter (DM)) were ensiled with four experimental treatments: i) CON, no additives; ii) CEL, added cellulase (120 U/g fresh matter [FM]); iii) CPR, added cellulase (120 U/g FM) and protease (50 U/g FM); and iv) CPS, added cellulase (120 U/g FM), protease (50 U/g FM), and starch (2% FM).

          Results

          All treatments with additives improved fermentation quality, showing higher DM (353 ~ 378 vs. 341 g/kg DM), lactic acid (LA) content (51.6 ~ 64.6 vs. 40.2 g/kg DM), lactic acid bacteria (LAB) counts (7.63 ~ 7.73 vs. 7.49 log10 CFU /g of FM), along with lower pH values (4.29 ~ 4.60 vs. 5.09), and DM losses (124 ~ 130 vs. 134 g/kg DM) compared to the CON group. All the additive treated groups showed higher in vitro digestibility of DM (698 ~ 720 vs. 618 g/kg DM), in vitro digestibility of NDF (395 ~ 412 vs. 336 g/kg DM), and ADF (277 ~ 298 vs. 232 g/kg DM) than CON. Among all the groups, the CPS group exhibited the highest DM content (378 g/kg DM), LA content (64.6 g/kg DM) and LAB counts (7.73 log 10 CFU /g of FM), with the lowest pH value (4.29) and DM losses (124 g/kg DM). Additionally, the additive treatments increased abundance of bacteria like Firmicutes and Enteroccocus, while reducing Proteobacteria abundance, and resulted in lower diversity and richness of the microbial community. Specifically, CPR and CPS silages showed increased Pediococcus and decreased Enterobacter compared to CON and CEL, and CPS silage had a relatively high abundance of favorable Bacteroidota. Furthermore, the CPS silage exhibited upregulated genetic functions, energy and lipid metabolism, as well as metabolism of cofactors and vitamins compared to the other groups.

          Conclusion

          The combined application of cellulase, protease, and starch effectively improved the fermentation quality, in vitro digestibility, and microbial community of mulberry leaf silage over the 30-day ensiling period.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.

          There is a need to standardize the NDF procedure. Procedures have varied because of the use of different amylases in attempts to remove starch interference. The original Bacillus subtilis enzyme Type IIIA (XIA) no longer is available and has been replaced by a less effective enzyme. For fiber work, a new enzyme has received AOAC approval and is rapidly displacing other amylases in analytical work. This enzyme is available from Sigma (Number A3306; Sigma Chemical Co., St. Louis, MO). The original publications for NDF and ADF (43, 53) and the Agricultural Handbook 379 (14) are obsolete and of historical interest only. Up to date procedures should be followed. Triethylene glycol has replaced 2-ethoxyethanol because of reported toxicity. Considerable development in regard to fiber methods has occurred over the past 5 yr because of a redefinition of dietary fiber for man and monogastric animals that includes lignin and all polysaccharides resistant to mammalian digestive enzymes. In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available. The latter are also of interest in rumen fermentation. Unlike starch, their fermentations are like that of cellulose but faster and yield no lactic acid. Physical and biological properties of carbohydrate fractions are more important than their intrinsic composition.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The estimation of carbohydrates in plant extracts by anthrone.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amino acids: metabolism, functions, and nutrition.

              Guoyao Wu (2009)
              Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/2878995Role: Role: Role: Role:
                Role: Role: Role: Role:
                Role: Role: Role: Role:
                Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/1821900Role: Role: Role:
                Role: Role: Role: Role:
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                18 February 2025
                2025
                : 16
                : 1517529
                Affiliations
                [1] 1 Research and Development Center, Guangdong VTR Bio-Tech Co., Ltd. , Zhuhai, China
                [2] 2 College of Animal Science and Technology, China Agricultural University , Beijing, China
                Author notes

                Edited by: Aliki Kapazoglou, Hellenic Agricultural Organization -DEMETER (ELGO-DIMITRA), Greece

                Reviewed by: Halima Sultana, University of Florida, United States

                Siran Wang, Jiangsu Academy of Agricultural Sciences, China

                *Correspondence: Xiangxue Xie, xxiangxue@ 123456163.com
                Article
                10.3389/fpls.2025.1517529
                11876043
                40041016
                3eae6296-6d4c-4cc4-972d-96002e793fe5
                Copyright © 2025 Zhao, Wu, Li, Huang, He and Xie

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 October 2024
                : 29 January 2025
                Page count
                Figures: 4, Tables: 4, Equations: 0, References: 64, Pages: 14, Words: 7713
                Funding
                The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This study was supported by a general program of the National Natural Science Foundation of China (Grant No. 31972593), and the National Key Research Development Program of China (Grant No. 2022YFC2805105).
                Categories
                Plant Science
                Original Research
                Custom metadata
                Crop and Product Physiology

                Plant science & Botany
                mulberry leaf,additives,fermentation quality, in vitro digestibility,microbial community

                Comments

                Comment on this article