25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Breakthroughs in the Antioxidant and Anti-Inflammatory Effects of Morella and Myrica Species

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidative stress is one of the risk factors for the development of several chronic diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Antioxidants are therefore highly sought and can be seen as a type of preventive medicine against several diseases. Myrica and Morella genus (Myricaceae) are taxonomically very close and their species are trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine, for instance in Chinese or Japanese folk medicine they are used to treat diarrhea, digestive problems, headache, burns and skin diseases. Nearly 36 compounds were isolated from different morphological parts of Myrica and/or Morella species and their antioxidant and anti-inflammatory activities evaluated. Thirteen of these compounds exhibit greater effects than the positive controls used. Adenodimerin A was the most active compound reported (in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay EC 50= 7.9 ± 0.3 µM). These results are just one aspect of the antioxidant and anti-inflammatory evaluations reported regarding Myrica and Morella species, so a comprehensive overview on the current status, highlighting the antioxidant health promoting effect of these species, their key antioxidant compounds as well as the compounds with protective effects against oxidative stress related diseases such as inflammation, is relevant.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

          Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antioxidant and prooxidant properties of flavonoids.

            The interest in possible health benefits of flavonoids has increased owing to their potent antioxidant and free radical scavenging activities observed in vitro. Nevertheless, the antioxidant efficacy of flavonoids in vivo is less documented and their prooxidant properties have been actually described in vivo. Due to their prooxidant properties, they are able to cause oxidative damage by reacting with various biomolecules, such as lipids, proteins and DNA. Hence, the aim of this review is to discuss both the antioxidant and prooxidant effects of flavonoids. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              iNOS-mediated nitric oxide production and its regulation.

              This review focuses on the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and its regulation under physiological and pathophysiological conditions. NO is an important biological mediator in the living organism that is synthesized from L-arginine using NADPH and molecular oxygen. However, the overproduction of NO which is catalyzed by iNOS, a soluble enzyme and active in its dimeric form, is cytotoxic. Immunostimulating cytokines or bacterial pathogens activate iNOS and generate high concentrations of NO through the activation of inducible nuclear factors, including NFkB. iNOS activation is regulated mainly at the transcriptional level, but also at posttranscriptional, translational and postranslational levels through effects on protein stability, dimerization, phosphorylation, cofactor binding and availability of oxygen and L-arginine as substrates. The prevention of the overproduction of NO in the living organism through control of regulatory pathways may assist in the treatment of high NO-mediated disorders without changing physiological levels of NO. Copyright 2004 Elsevier Inc.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                28 July 2015
                August 2015
                : 16
                : 8
                : 17160-17180
                Affiliations
                [1 ]Department of Technological Science and Development, University of Azores, Ponta Delgada 9501-801, Portugal; E-Mails: 20137026@ 123456aluno.uac.pt (B.J.C.S.); anaseca@ 123456uac.pt (A.M.L.S.); barreto@ 123456uac.pt (M.C.B.)
                [2 ]Department of Chemistry & Química Orgânica Produtos Naturais and Agroalimentares, University of Aveiro, Aveiro 3810-193, Portugal
                [3 ]Centro Investigação Recursos Naturais, University of Azores, Ponta Delgada 9501-801, Portugal
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Author to whom correspondence should be addressed; E-Mail: diana@ 123456ua.pt ; Tel.: +351-234-401-407; Fax: +351-234-370-084.
                Article
                ijms-16-17160
                10.3390/ijms160817160
                4581187
                3e88d37c-ddcb-4ca5-8288-050887724514
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 June 2015
                : 14 July 2015
                Categories
                Review

                Molecular biology
                morella,myrica,antioxidant,anti-inflammatory,flavonoids,diarylheptanoid
                Molecular biology
                morella, myrica, antioxidant, anti-inflammatory, flavonoids, diarylheptanoid

                Comments

                Comment on this article