7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stress-responsive properties of metallocenes in metallopolymers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review article combines the field of metallopolymers and stress-responsiveness on a molecular level, namely, metallocenes, as emerging stress-responsive building blocks for materials.

          Abstract

          In this review, we focus on metallocenes ( e.g., ferrocene, ruthenocene, and cobaltocene/cobaltocenium), a class of prototypical organometallic compounds, as emerging stress-responsive building blocks for materials. In particular, they are used in the field of polymers as molecular ball-bearings, redox molecular motors, and mechanophores in response to varied force stimulus intensities. We present a workflow for a stress-responsive metallocene, the research techniques in various material phases, the factors impacting their mechanosensitivity, and the functional applications. Future prospects are briefly highlighted. This review provides fresh viewpoints and mechanistic insights to stimulate further studies in this field.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness

          Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Structural absorption by barbule microstructures of super black bird of paradise feathers

            Many studies have shown how pigments and internal nanostructures generate color in nature. External surface structures can also influence appearance, such as by causing multiple scattering of light (structural absorption) to produce a velvety, super black appearance. Here we show that feathers from five species of birds of paradise (Aves: Paradisaeidae) structurally absorb incident light to produce extremely low-reflectance, super black plumages. Directional reflectance of these feathers (0.05–0.31%) approaches that of man-made ultra-absorbent materials. SEM, nano-CT, and ray-tracing simulations show that super black feathers have titled arrays of highly modified barbules, which cause more multiple scattering, resulting in more structural absorption, than normal black feathers. Super black feathers have an extreme directional reflectance bias and appear darkest when viewed from the distal direction. We hypothesize that structurally absorbing, super black plumage evolved through sensory bias to enhance the perceived brilliance of adjacent color patches during courtship display.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              In situ click chemistry generation of cyclooxygenase-2 inhibitors

              Cyclooxygenase-2 isozyme is a promising anti-inflammatory drug target, and overexpression of this enzyme is also associated with several cancers and neurodegenerative diseases. The amino-acid sequence and structural similarity between inducible cyclooxygenase-2 and housekeeping cyclooxygenase-1 isoforms present a significant challenge to design selective cyclooxygenase-2 inhibitors. Herein, we describe the use of the cyclooxygenase-2 active site as a reaction vessel for the in situ generation of its own highly specific inhibitors. Multi-component competitive-binding studies confirmed that the cyclooxygenase-2 isozyme can judiciously select most appropriate chemical building blocks from a pool of chemicals to build its own highly potent inhibitor. Herein, with the use of kinetic target-guided synthesis, also termed as in situ click chemistry, we describe the discovery of two highly potent and selective cyclooxygenase-2 isozyme inhibitors. The in vivo anti-inflammatory activity of these two novel small molecules is significantly higher than that of widely used selective cyclooxygenase-2 inhibitors.
                Bookmark

                Author and article information

                Contributors
                Journal
                PCOHC2
                Polymer Chemistry
                Polym. Chem.
                Royal Society of Chemistry (RSC)
                1759-9954
                1759-9962
                May 4 2021
                2021
                : 12
                : 17
                : 2509-2521
                Affiliations
                [1 ]College of Science
                [2 ]Nanjing Forestry University
                [3 ]Nanjing
                [4 ]PR China
                Article
                10.1039/D1PY00311A
                3e86d05c-5817-4e5c-9b12-74eb74623656
                © 2021

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article