54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review

      , , ,
      Desalination
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references151

          • Record: found
          • Abstract: not found
          • Article: not found

          THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative.

            The control of water pollution has become of increasing importance in recent years. The release of dyes into the environment constitutes only a small proportion of water pollution, but dyes are visible in small quantities due to their brilliance. Tightening government legislation is forcing textile industries to treat their waste effluent to an increasingly high standard. Currently, removal of dyes from effluents is by physio-chemical means. Such methods are often very costly and although the dyes are removed, accumulation of concentrated sludge creates a disposal problem. There is a need to find alternative treatments that are effective in removing dyes from large volumes of effluents and are low in cost, such as biological or combination systems. This article reviews the current available technologies and suggests an effective, cheaper alternative for dye removal and decolourisation applicable on large scale.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adsorption of methylene blue on low-cost adsorbents: a review.

              In this article, the use of low-cost adsorbents for the removal of methylene blue (MB) from solution has been reviewed. Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those which are not easily biodegradable. The removal of MB, as a pollutant, from waste waters of textile, paper, printing and other industries has been addressed by the researchers. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred adsorbent for color removal, its widespread use is restricted due to its relatively high cost which led to the researches on alternative non-conventional and low-cost adsorbents. The purpose of this review article is to organize the scattered available information on various aspects on a wide range of potentially low-cost adsorbents for MB removal. These include agricultural wastes, industrial solid wastes, biomass, clays minerals and zeolites. Agricultural waste materials being highly efficient, low cost and renewable source of biomass can be exploited for MB remediation. It is evident from a literature survey of about 185 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for MB. Copyright (c) 2009 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Desalination
                Desalination
                Elsevier BV
                00119164
                October 2011
                October 2011
                : 280
                : 1-3
                : 1-13
                Article
                10.1016/j.desal.2011.07.019
                3e804a65-b032-45ba-ac2c-ba6f0e58c572
                © 2011

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article