9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tailor-made alginate bearing galactose moieties on mannuronic residues: selective modification achieved by a chemoenzymatic strategy.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          1-Amino-1-deoxygalactose (12%, mole) has been chemically introduced on a mannuronan sample via an N-glycosidic bond involving the uronic group of the mannuronic acid (M) residues. The unsubstituted M residues in the modified polymer were converted into guluronic moieties (G) by the use of two C-5 epimerases, resulting in an alginate-like molecule selectively modified on M residues. The molecular details of the newly formed polymer, in terms of both composition and molecular dimensions, were disclosed by use of (1)H NMR, intrinsic viscosity, and high-performance size-exclusion chromatography-multiple-angle laser light scattering (HPSEC-MALLS). Circular dichroism has revealed that the modified alginate-like polymer obtained after epimerization was able to bind calcium due to the introduction of alternating and homopolymeric G sequences. The gel-forming ability of this M-selectively modified material was tested and compared with an alginate sample containing 14% galactose introduced on G residues. Mechanical spectroscopy pointed out that the modified epimerized material was able to form stable gels and that the kinetics of the gel formation was similar to that of the unsubstituted sample. In contrast, the G-modified alginate samples showed a slower gel formation, eventually leading to gel characterized by a reduced storage modulus. The advantage of the selective modification on M residues was confirmed by measuring the Young's modulus of gel cylinders of the different samples. Furthermore, due to the high content in alternating sequences, a marked syneresis was disclosed for the modified-epimerized sample. Finally, calcium beads obtained from selectively M-modified alginate showed a higher stability than those from the G-modified alginate, as evaluated upon treatment with nongelling ions.

          Related collections

          Author and article information

          Journal
          Biomacromolecules
          Biomacromolecules
          American Chemical Society (ACS)
          1525-7797
          1525-7797
          January 11 2005
          : 6
          : 1
          Affiliations
          [1 ] Institute of Biotechnology, Norwegian University of Science and Technology, Sem Saelands vei 6-8, N-7491 Trondheim, Norway. donati@bbcm.units.it
          Article
          10.1021/bm040053z
          15638508
          3e1b8244-572d-43ec-9559-2f2708a4ec52
          History

          Comments

          Comment on this article