10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Boron Toxicity and Deficiency in Agricultural Plants

      review-article
      International Journal of Molecular Sciences
      MDPI
      boron, agriculture, deficiency, toxicity, wheat

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Boron is an essential plant micronutrient taken up via the roots mostly in the form of boric acid. Its important role in plant metabolism involves the stabilization of molecules with cis-diol groups. The element is involved in the cell wall and membrane structure and functioning; therefore, it participates in numerous ion, metabolite, and hormone transport reactions. Boron has an extremely narrow range between deficiency and toxicity, and inadequate boron supply exhibits a detrimental effect on the yield of agricultural plants. The deficiency problem can be solved by fertilization, whereas soil boron toxicity can be ameliorated using various procedures; however, these approaches are costly and time-consuming, and they often show temporary effects. Plant species, as well as the genotypes within the species, dramatically differ in terms of boron requirements; thus, the available soil boron which is deficient for one crop may exhibit toxic effects on another. The widely documented intraspecies genetic variability regarding boron utilization efficiency and toxicity tolerance, together with the knowledge of the physiology and genetics of boron, should result in the development of efficient and tolerant varieties that may represent a long-term sustainable solution for the problem of inadequate or excess boron supply.

          Related collections

          Most cited references216

          • Record: found
          • Abstract: found
          • Article: not found

          The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation.

          Boron (B) is essential in plants but often present at low concentrations in the environment. To investigate how plants survive under conditions of B limitation, we conducted a transcriptome analysis and identified NIP5;1, a member of the major intrinsic protein family, as a gene upregulated in B-deficient roots of Arabidopsis thaliana. Promoter-beta-glucuronidase fusions indicated that NIP5;1 is strongly upregulated in the root elongation zone and the root hair zone under B limitation, and green fluorescent protein-tagged NIP5;1 proteins localized to the plasma membrane. Expression in Xenopus laevis oocytes demonstrated that NIP5;1 facilitated the transport of boric acid in addition to water. Importantly, two T-DNA insertion lines of NIP5;1 displayed lower boric acid uptake into roots, lower biomass production, and increased sensitivity of root and shoot development to B deficiency. These results identify NIP5;1 as a major plasma membrane boric acid channel crucial for the B uptake required for plant growth and development under B limitation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide.

            Rhamnogalacturonan II (RG-II) is a structurally complex pectic polysaccharide that was first identified in 1978 as a quantitatively minor component of suspension-cultured sycamore cell walls. Subsequent studies have shown that RG-II is present in the primary walls of angiosperms, gymnosperms, lycophytes, and pteridophytes and that its glycosyl sequence is conserved in all vascular plants examined to date. This is remarkable because RG-II is composed of at least 12 different glycosyl residues linked together by more than 20 different glycosidic linkages. However, only a few of the genes and proteins required for RG-II biosynthesis have been identified. The demonstration that RG-II exists in primary walls as a dimer that is covalently cross-linked by a borate diester was a major advance in our understanding of the structure and function of this pectic polysaccharide. Dimer formation results in the cross-linking of the two homogalacturonan chains upon which the RG-II molecules are constructed and is required for the formation of a three-dimensional pectic network in muro. This network contributes to the mechanical properties of the primary wall and is required for normal plant growth and development. Indeed, changes in wall properties that result from decreased borate cross-linking of pectin may lead to many of the symptoms associated with boron deficiency in plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arabidopsis boron transporter for xylem loading.

              Boron deficiency hampers the productivity of 132 crops in more than 80 countries. Boron is essential in higher plants primarily for maintaining the integrity of cell walls and is also beneficial and might be essential in animals and in yeast. Understanding the molecular mechanism(s) of boron transport is crucial for alleviating boron deficiency. Here we describe the molecular identification of boron transporters in biological systems. The Arabidopsis thaliana mutant bor1-1 is sensitive to boron deficiency. Uptake studies indicated that xylem loading is the key step for boron accumulation in shoots with a low external boron supply and that the bor1-1 mutant is defective in this process. Positional cloning identified BOR1 as a membrane protein with homology to bicarbonate transporters in animals. Moreover, a fusion protein of BOR1 and green fluorescent protein (GFP) localized to the plasma membrane in transformed cells. The promoter of BOR1 drove GFP expression in root pericycle cells. When expressed in yeast, BOR1 decreased boron concentrations in cells. We show here that BOR1 is an efflux-type boron transporter for xylem loading and is essential for protecting shoots from boron deficiency.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                20 February 2020
                February 2020
                : 21
                : 4
                : 1424
                Affiliations
                Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000 Novi Sad, Serbia; milka.brdar@ 123456ifvcns.ns.ac.rs ; Tel.: +381-21-780-365
                Article
                ijms-21-01424
                10.3390/ijms21041424
                7073067
                32093172
                3db1a4f8-f346-443a-a32a-f775c7ea88f4
                © 2020 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 December 2019
                : 12 February 2020
                Categories
                Review

                Molecular biology
                boron,agriculture,deficiency,toxicity,wheat
                Molecular biology
                boron, agriculture, deficiency, toxicity, wheat

                Comments

                Comment on this article