16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references26

          • Record: found
          • Abstract: not found
          • Article: not found

          Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intercalation and delamination of layered carbides and carbonitrides.

            Intercalation and delamination of two-dimensional solids in many cases is a requisite step for exploiting their unique properties. Herein we report on the intercalation of two-dimensional Ti3C2, Ti3CN and TiNbC-so called MXenes. Intercalation of hydrazine, and its co-intercalation with N,N-dimethylformamide, resulted in increases of the c-lattice parameters of surface functionalized f-Ti3C2, from 19.5 to 25.48 and 26.8 Å, respectively. Urea is also intercalated into f-Ti3C2. Molecular dynamics simulations suggest that a hydrazine monolayer intercalates between f-Ti3C2 layers. Hydrazine is also intercalated into f-Ti3CN and f-TiNbC. When dimethyl sulphoxide is intercalated into f-Ti3C2, followed by sonication in water, the f-Ti3C2 is delaminated forming a stable colloidal solution that is in turn filtered to produce MXene 'paper'. The latter shows excellent Li-ion capacity at extremely high charging rates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Van der Waals Density Functional for General Geometries

              A scheme within density functional theory is proposed that provides a practical way to generalize to unrestricted geometries the method applied with some success to layered geometries [H. Rydberg, et al., Phys. Rev. Lett. 91, 126402 (2003)]. It includes van der Waals forces in a seamless fashion. By expansion to second order in a carefully chosen quantity contained in the long range part of the correlation functional, the nonlocal correlations are expressed in terms of a density-density interaction formula. It contains a relatively simple parametrized kernel, with parameters determined by the local density and its gradient. The proposed functional is applied to rare gas and benzene dimers, where it is shown to give a realistic description.
                Bookmark

                Author and article information

                Journal
                Nature Photonics
                Nature Photon
                Springer Nature
                1749-4885
                1749-4893
                May 18 2015
                May 18 2015
                : 9
                : 6
                : 409-415
                Article
                10.1038/nphoton.2015.78
                3da88dcf-a675-411f-9460-9df69343ff2e
                © 2015
                History

                Comments

                Comment on this article