4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      miRNA-146a Improves Immunomodulatory Effects of MSC-derived Exosomes in Rheumatoid Arthritis

      1 , 1 , 1 , 2
      Current Gene Therapy
      Bentham Science Publishers Ltd.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Rheumatoid arthritis (RA) is a severe inflammatory joint disorder, and several studies have taken note of the probability that microRNAs (miRNAs) play an important role in RA pathogenesis. MiR-146 and miR-155 arose as primary immune response regulators. Mesenchymal stem cells (MSCs) immunomodulatory function is primarily regulated by paracrine factors, such as exosomes. Exosomes, which serve as carriers of genetic information in cell-to-cell communication, transmit miRNAs between cells and have been studied as vehicles for the delivery of therapeutic molecules.

          Aims:

          The current research aimed to investigate the therapeutic effect of miR-146a/miR-155 transduced mesenchymal stem cells (MSC)-derived exosomes on the immune response.

          Methods:

          Here, exosomes were extracted from normal MSCs with over-expressed miR-146a/miR-155; Splenocytes were isolated from collagen-induced arthritis (CIA) and control mice. Expression levels miR-146a and miR-155 were then monitored. Flow cytometry was performed to assess the impact of the exosomes on regulatory T-cell (Treg) levels. Expression of some key autoimmune response genes and their protein products, including retinoic acid-related orphan receptor (ROR)-γt, tumor necrosis factor (TNF)-α, interleukin (IL)-17, -6, -10, and transforming growth factor (TGF)-β in the Splenocytes was determined using both quantitative real-time PCR and ELISA. The results showed that miR-146a was mainly down-regulated in CIA mice. Treatment with MSC-derived exosomes and miR-146a/miR-155-transduced MSC-derived exosomes significantly altered the CIA mice Treg cell levels compared to in control mice.

          Results:

          Ultimately, such modulation may promote the recovery of appropriate T-cell responses in inflammatory situations such as RA.

          Conclusion:

          miR-146a-transduced MSC-derived exosomes also increased forkhead box P3 (Fox- P3), TGFβ and IL-10 gene expression in the CIA mice; miR-155 further increased the gene expressions of RORγt, IL-17, and IL-6 in these mice. Based on the findings here, Exosomes appears to promote the direct intracellular transfer of miRNAs between cells and to represent a possible therapeutic strategy for RA. The manipulation of MSC-derived exosomes with anti-inflammatory miRNA may increase Treg cell populations and anti-inflammatory cytokines.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of microRNA function in animals

          Since their serendipitous discovery in nematodes, microRNAs (miRNAs) have emerged as key regulators of biological processes in animals. These small RNAs form complex regulatory networks in cell development, differentiation and homeostasis. Deregulation of miRNA function is associated with an increasing number of human diseases, particularly cancer. Recent discoveries have expanded our understanding of how miRNAs are regulated. Here we review the mechanisms that modulate miRNA activity, their stability and their localization through alternative processing, sequence editing, post-translational modifications of Argonaute proteins, viral factors, transport from the cytoplasm and regulation of miRNA–target interactions. We conclude by discussing intriguing open questions to be answered by future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis

            CD4+ T cells are central mediators of autoimmune pathology; however, defining their key effector functions in specific autoimmune diseases remains challenging. Pathogenic CD4+ T cells within affected tissues may be identified by expression of markers of recent activation. Here we use mass cytometry to analyse activated T cells in joint tissue from patients with rheumatoid arthritis, a chronic immune-mediated arthritis that affects up to 1% of the population. This approach revealed a markedly expanded population of PD-1hiCXCR5−CD4+ T cells in synovium of patients with rheumatoid arthritis. However, these cells are not exhausted, despite high PD-1 expression. Rather, using multidimensional cytometry, transcriptomics, and functional assays, we define a population of PD-1hiCXCR5− ‘peripheral helper’ T (TPH) cells that express factors enabling B-cell help, including IL-21, CXCL13, ICOS, and MAF. Like PD-1hiCXCR5+ T follicular helper cells, TPH cells induce plasma cell differentiation in vitro through IL-21 secretion and SLAMF5 interaction (refs 3, 4). However, global transcriptomics highlight differences between TPH cells and T follicular helper cells, including altered expression of BCL6 and BLIMP1 and unique expression of chemokine receptors that direct migration to inflamed sites, such as CCR2, CX3CR1, and CCR5, in TPH cells. TPH cells appear to be uniquely poised to promote B-cell responses and antibody production within pathologically inflamed non-lymphoid tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis

              Objectives: Mesenchymal stem cells (MSCs) release extracellular vesicles (EVs) that display a therapeutic effect in inflammatory disease models. Although MSCs can prevent arthritis, the role of MSCs-derived EVs has never been reported in rheumatoid arthritis. This prompted us to compare the function of exosomes (Exos) and microparticles (MPs) isolated from MSCs and investigate their immunomodulatory function in arthritis. Methods: MSCs-derived Exos and MPs were isolated by differential ultracentrifugation. Immunosuppressive effects of MPs or Exos were investigated on T and B lymphocytes in vitro and in the Delayed-Type Hypersensitivity (DTH) and Collagen-Induced Arthritis (CIA) models. Results: Exos and MPs from MSCs inhibited T lymphocyte proliferation in a dose-dependent manner and decreased the percentage of CD4+ and CD8+ T cell subsets. Interestingly, Exos increased Treg cell populations while parental MSCs did not. Conversely, plasmablast differentiation was reduced to a similar extent by MSCs, Exos or MPs. IFN-γ priming of MSCs before vesicles isolation did not influence the immunomodulatory function of isolated Exos or MPs. In DTH, we observed a dose-dependent anti-inflammatory effect of MPs and Exos, while in the CIA model, Exos efficiently decreased clinical signs of inflammation. The beneficial effect of Exos was associated with fewer plasmablasts and more Breg-like cells in lymph nodes. Conclusions: Both MSCs-derived MPs and Exos exerted an anti-inflammatory role on T and B lymphocytes independently of MSCs priming. However, Exos were more efficient in suppressing inflammation in vivo. Our work is the first demonstration of the therapeutic potential of MSCs-derived EVs in inflammatory arthritis.
                Bookmark

                Author and article information

                Journal
                Current Gene Therapy
                CGT
                Bentham Science Publishers Ltd.
                15665232
                November 13 2020
                November 13 2020
                : 20
                : 4
                : 297-312
                Affiliations
                [1 ]Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
                [2 ]Cell-Based Therapies Research Center, Digestive Disease Research Institute, Sciences, Tehran, Iran
                Article
                10.2174/1566523220666200916120708
                32938348
                3d877a8f-1602-42c5-afb6-5e8615202a49
                © 2020
                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article