41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human CD8 + T-cells Recognizing Peptides from Mycobacterium tuberculosis ( Mtb) Presented by HLA-E Have an Unorthodox Th2-like, Multifunctional, Mtb Inhibitory Phenotype and Represent a Novel Human T-cell Subset

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mycobacterial antigens are not exclusively presented to T-cells by classical HLA-class Ia and HLA-class II molecules, but also through alternative antigen presentation molecules such as CD1a/b/c, MR1 and HLA-E. We recently described mycobacterial peptides that are presented in HLA-E and recognized by CD8 + T-cells. Using T-cell cloning, phenotyping, microbiological, functional and RNA-expression analyses, we report here that these T-cells can exert cytolytic or suppressive functions, inhibit mycobacterial growth, yet express GATA3, produce Th2 cytokines (IL-4,-5,-10,-13) and activate B-cells via IL-4. In TB patients, Mtb specific cells were detectable by peptide-HLA-E tetramers, and IL-4 and IL-13 were produced following peptide stimulation. These results identify a novel human T-cell subset with an unorthodox, multifunctional Th2 like phenotype and cytolytic or regulatory capacities, which is involved in the human immune response to mycobacteria and demonstrable in active TB patients’ blood. The results challenge the current dogma that only Th1 cells are able to inhibit Mtb growth and clearly show that Th2 like cells can strongly inhibit outgrowth of Mtb from human macrophages. These insights significantly expand our understanding of the immune response in infectious disease.

          Author Summary

          Pathogens like Mycobacterium tuberculosis (Mtb) are recognized by human T-cells following their presentation in HLA molecules. HLA class I molecules can be divided into two types, classical as well as non-classical HLA molecules. Here we studied the non-classical HLA family member, HLA-E, which displays only minimal genetic variation between individuals and is relative resistant to down modulation by HIV infection. We have characterized the T-cells that recognize Mtb in the context of HLA-E in detail and found that these human CD8 + T-cells had unexpected, unorthodox properties: in contrast to most classical CD8 + T-cells, the T-cells activated by HLA-E uniquely produced Th2 (IL-4, IL-5, IL-13) instead of the usual Th1 cytokines, and were able to activate B-cells and induced cytokine production by these B-cells. Moreover, these HLA-E restricted CD8 + T-cells inhibited Mtb growth inside cells, an important property to contribute to resolution of the infection. Thus these T-cells represent a new player in the human immune response to infection, and add B-cell activation to the key pathways following infection with Mtb.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Intracellular antibody-bound pathogens stimulate immune signaling via Fc-receptor TRIM21

          Antibodies can be carried into the cell during pathogen infection where they are detected by the ubiquitously expressed cytosolic antibody receptor TRIM21. Here we show that TRIM21 recognition of intracellular antibodies activates immune signaling. TRIM21 catalyses K63-ubiquitin chain formation, stimulating transcription factor pathways NF-κB, AP-1 and IRF3, IRF5, IRF7. Activation results in proinflammatory cytokine production, modulation of natural killer (NK) stress ligands and the induction of an antiviral state. Intracellular antibody signaling is abrogated by genetic deletion of TRIM21 and is recovered by ectopic TRIM21 expression. Antibody sensing by TRIM21 can be stimulated upon infection by DNA or RNA non-enveloped viruses or intracellular bacteria. The antibody-TRIM21 detection system provides potent, comprehensive innate immune activation, independent of known pattern recognition receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Vaccines against Tuberculosis: Where Are We and Where Do We Need to Go?

            In this review we discuss recent progress in the development, testing, and clinical evaluation of new vaccines against tuberculosis (TB). Over the last 20 years, tremendous progress has been made in TB vaccine research and development: from a pipeline virtually empty of new TB candidate vaccines in the early 1990s, to an era in which a dozen novel TB vaccine candidates have been and are being evaluated in human clinical trials. In addition, innovative approaches are being pursued to further improve existing vaccines, as well as discover new ones. Thus, there is good reason for optimism in the field of TB vaccines that it will be possible to develop better vaccines than BCG, which is still the only vaccine available against TB.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human gene expression profiles of susceptibility and resistance in tuberculosis.

              Tuberculosis (TB) still poses a profound burden on global health, owing to significant morbidity and mortality worldwide. Although a fully functional immune system is essential for the control of Mycobacterium tuberculosis infection, the underlying mechanisms and reasons for failure in part of the infected population remain enigmatic. Here, whole-blood microarray gene expression analyses were performed in TB patients and in latently as well as uninfected healthy controls to define biomarkers predictive of susceptibility and resistance. Fc gamma receptor 1B (FCGRIB)was identified as the most differentially expressed gene, and, in combination with four other markers, produced a high degree of accuracy in discriminating TB patients and latently infected donors. We determined differentially expressed genes unique for active disease and identified profiles that correlated with susceptibility and resistance to TB. Elevated expression of innate immune-related genes in active TB and higher expression of particular gene clusters involved in apoptosis and natural killer cell activity in latently infected donors are likely to be the major distinctive factors determining failure or success in controlling M. tuberculosis infection. The gene expression profiles defined in this study provide valuable clues for better understanding of progression from latent infection to active disease and pave the way for defining predictive correlates of protection in TB.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                24 March 2015
                March 2015
                : 11
                : 3
                : e1004671
                Affiliations
                [1 ]Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
                [2 ]Central Laboratory for Advanced Diagnostic and Biomedical Research (CLADIBIOR), Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
                Weill Medical College of Cornell University, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KEvM MCH THMO SAJ. Performed the experiments: KEvM NC SAJ. Analyzed the data: KEvM SAJ. Contributed reagents/materials/analysis tools: MCH NC FD. Wrote the paper: KEvM SAJ THMO.

                ‡ These authors share last authorship.

                Article
                PPATHOGENS-D-14-02837
                10.1371/journal.ppat.1004671
                4372528
                25803478
                3d76943c-ffa5-4599-9e94-fc04edae2fe6
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 26 November 2014
                : 8 January 2015
                Page count
                Figures: 6, Tables: 1, Pages: 24
                Funding
                We acknowledge European Commission FP7 NEWTBVAC contract no. HEALTH.F3.2009 241745, European Commission FP7 ADITEC contract no. HEALTH.2011.1.4-4 280873 (the text represents the authors’ views and does not necessarily represent a position of the Commission who will not be liable for the use made of such information), The Netherlands Organization for Scientific Research (VENI grant 916.86.115), the Gisela Thier Foundation of the Leiden University Medical Center and the Netherlands Leprosy Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article