24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization and diagnostic marker for TTG1 regulating tannin and anthocyanin biosynthesis in faba bean

      research-article
      ,
      Scientific Reports
      Nature Publishing Group UK
      Agricultural genetics, Gene expression profiling

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Condensed tannins, found in coloured-flowering varieties of faba bean ( Vicia faba L) are, after vicine and convicine, one of the major anti-nutritional factors for monogastric animals. The development of tannin-free cultivars is a key goal in breeding to broaden the use of this legume in the animal feed industry. Two recessive genes, zt-1 and zt-2, control the zero-tannin content and promote white-flowered plants. Previous studies exploiting synteny with the model Medicago truncatula reported a mutation in TTG1, a gene encoding a WD40 transcription factor located in chromosome II, as the responsible for the zt-1 phenotypes. Here a comprehensive analysis of VfTTG1 (including phylogenetic relationships, gene structure and gene expression) has been conducted to confirm the identity of the gene and to reveal structural changes that may result in different functional alleles. The results confirmed the identity of the candidate and revealed the existence of two different alleles responsible for the phenotype: ttg1-a, probably due to a mutation in the promoter region, and ttg1-b caused by a deletion at the 5′end of VfTTG1. Based on the sequencing results, an allele-specific diagnostic marker was designed that differentiate zt-1 from wild and zt-2 genotypes and facilitates its deployment in faba bean breeding programs.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances on the regulation of anthocyanin synthesis in reproductive organs.

          Anthocyanins represent the major red, purple, violet and blue pigments in many flowers and fruits. They attract pollinators and seed dispersers and defend plants against abiotic and biotic stresses. Anthocyanins are produced by a specific branch of the flavonoid pathway, which is differently regulated in monocot and dicot species. In the monocot maize, the anthocyanin biosynthesis genes are activated as a single unit by a ternary complex of MYB-bHLH-WD40 transcription factors (MBW complex). In the dicot Arabidopsis, anthocyanin biosynthesis genes can be divided in two subgroups: early biosynthesis genes (EBGs) are activated by co-activator independent R2R3-MYB transcription factors, whereas late biosynthesis genes (LBGs) require an MBW complex. In addition to this, a complex regulatory network of positive and negative feedback mechanisms controlling anthocyanin synthesis in Arabidopsis has been described. Recent studies have broadened our understanding of the regulation of anthocyanin synthesis in flowers and fruits, indicating that a regulatory system based on the cooperation of MYB, bHLH and WD40 proteins that control floral and fruit pigmentation is common to many dicot species. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flavonoid oxidation in plants: from biochemical properties to physiological functions.

            Flavonoids protect plants against various biotic and abiotic stresses, and their occurrence in human diet participates in preventing degenerative diseases. Many of the biological roles of flavonoids are attributed to their potential cytotoxicity and antioxidant abilities. Flavonoid oxidation contributes to these chemical and biological properties and can lead to the formation of brown pigments in plant tissues as well as plant-derived foods and beverages. Flavonoid oxidation in planta is mainly catalyzed by polyphenol oxidases (catechol oxidases and laccases) and peroxidases. These activities are induced during seed and plant development, and by environmental stresses such as pathogen attacks. Their complex mode of action is regulated at several levels, involving transcriptional to post-translational mechanisms together with the differential subcellular compartmentalization of enzymes and substrates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines.

              Given the highly dynamic nature of mRNA transcription and the potential variables introduced in sample handling and in the downstream processing steps (Garson et al. (2009)), a standardized approach to each step of the RT-qPCR workflow is critical for reliable and reproducible results. The MIQE provides this approach with a checklist that contains 85 parameters to assure quality results that will meet the acceptance criteria of any journal (Bustin et al. (2009)). In this paper we demonstrate how to apply the MIQE guidelines (www.rdml.org/miqe) to establish a solid experimental approach. Copyright 2010. Published by Elsevier Inc.
                Bookmark

                Author and article information

                Contributors
                natalia.gutierrez.leiva@juntadeandalucia.es
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 November 2019
                7 November 2019
                2019
                : 9
                : 16174
                Affiliations
                ISNI 0000 0001 2195 4653, GRID grid.425162.6, Área de Genómica y Biotecnología, IFAPA-Centro Alameda del Obispo, Apdo 3092, ; E-14080 Córdoba, Spain
                Author information
                http://orcid.org/0000-0001-5248-0390
                Article
                52575
                10.1038/s41598-019-52575-x
                6838129
                31700069
                3d5710cc-4b39-491e-ae17-ec050cbe5def
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 August 2019
                : 11 October 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                agricultural genetics,gene expression profiling
                Uncategorized
                agricultural genetics, gene expression profiling

                Comments

                Comment on this article