4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Recent Progress and Challenges in Microscale Urban Heat Modeling and Measurement for Urban Engineering Applications

      ,
      Journal of Thermal Science and Engineering Applications
      ASME International

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review focuses on progress and emerging challenges in experimentally validated modeling of microscale urban thermal environments over the last two decades. In the last few decades, there has been a surge in urban energy contribution resulting in elevated urban day-/night-time air temperatures. While there is no single solution to urban heat, mitigation strategies can be implemented to minimize the harmful effects of urban heat both on humans and the environment. To study the effects of urban heat, numerical modeling of urban thermal environments has seen a rise in usage of several application specific atmospheric modeling software packages, and multiple studies and reviews have already covered the prolific engineering use cases. However, there are inherent and unintentional biases introduced by each modeling software package, that inhibit validity and accuracy for general engineering use. This review critically analyzes the limitations of current state-of-the-art (SOA) microscale atmospheric modeling approaches and identify necessary areas for improvement. Urban thermal environment models must be validated with measurements to gain confidence in the predictive capabilities. This review will additionally examine the next generation of measurement techniques that leverage advances in computing and communications to create distributed meteorological sensor networks for improved spatial and temporal resolutions, that can provide a rich platform for model validation. High fidelity and accurate simulations of urban thermal environments improve confidence in the study of urban heat, its mitigation, and its impact on urban engineering applications in building energy usage and sustainability.

          Related collections

          Most cited references191

          • Record: found
          • Abstract: not found
          • Article: not found

          The energetic basis of the urban heat island

          T. Oke (1982)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Thermal remote sensing of urban climates

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities

              Background Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. Objectives We analyzed mortality risk for heat waves in 43 U.S. cities (1987–2005) and investigated how effects relate to heat waves’ intensity, duration, or timing in season. Methods Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Results Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29–5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06–7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14–4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. Conclusions We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.
                Bookmark

                Author and article information

                Journal
                Journal of Thermal Science and Engineering Applications
                ASME International
                1948-5085
                1948-5093
                January 01 2023
                January 01 2023
                November 10 2022
                : 15
                : 1
                Article
                10.1115/1.4056054
                3d38abe4-419a-424d-9db6-9a1d659b658b
                © 2022

                https://www.asme.org/publications-submissions/publishing-information/legal-policies

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content117

                Most referenced authors1,144