38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Retinoic Acid Signaling Organizes Endodermal Organ Specification along the Entire Antero-Posterior Axis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Endoderm organ primordia become specified between gastrulation and gut tube folding in Amniotes. Although the requirement for RA signaling for the development of a few individual endoderm organs has been established a systematic assessment of its activity along the entire antero-posterior axis has not been performed in this germ layer.

          Methodology/Principal Findings

          RA is synthesized from gastrulation to somitogenesis in the mesoderm that is close to the developing gut tube. In the branchial arch region specific levels of RA signaling control organ boundaries. The most anterior endoderm forming the thyroid gland is specified in the absence of RA signaling. Increasing RA in anterior branchial arches results in thyroid primordium repression and the induction of more posterior markers such as branchial arch Hox genes. Conversely reducing RA signaling shifts Hox genes posteriorly in endoderm. These results imply that RA acts as a caudalizing factor in a graded manner in pharyngeal endoderm. Posterior foregut and midgut organ primordia also require RA, but exposing endoderm to additional RA is not sufficient to expand these primordia anteriorly. We show that in chick, in contrast to non-Amniotes, RA signaling is not only necessary during gastrulation, but also throughout gut tube folding during somitogenesis. Our results show that the induction of CdxA, a midgut marker, and pancreas induction require direct RA signaling in endoderm. Moreover, communication between CdxA + cells is necessary to maintain CdxA expression, therefore synchronizing the cells of the midgut primordium. We further show that the RA pathway acts synergistically with FGF4 in endoderm patterning rather than mediating FGF4 activity.

          Conclusions/Significance

          Our work establishes that retinoic acid (RA) signaling coordinates the position of different endoderm organs along the antero-posterior axis in chick embryos and could serve as a basis for the differentiation of specific endodermal organs from ES cells.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells.

          Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fgf10 is essential for limb and lung formation.

            The interactions between fibroblast growth factors (FGF) and their receptors have important roles in mediating mesenchymal-epithelial cell interactions during embryogenesis. In particular, Fgf10 is predicted to function as a regulator of brain, lung and limb development on the basis of its spatiotemporal expression pattern in the developing embryo. To define the role of Fgf10, we generated Fgf10-deficient mice. Fgf10-/- mice died at birth due to the lack of lung development. Trachea was formed, but subsequent pulmonary branching morphogenesis was disrupted. In addition, mutant mice had complete truncation of the fore- and hindlimbs. In Fgf10-/- embryos, limb bud formation was initiated but outgrowth of the limb buds did not occur; however, formation of the clavicles was not affected. Analysis of the expression of marker genes in the mutant limb buds indicated that the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) did not form. Thus, we show here that Fgf10 serves as an essential regulator of lung and limb formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless.

              Fgf-10-deficient mice (Fgf-10(-/-)) were generated to determine the role(s) of Fgf-10 in vertebrate development. Limb bud initiation was abolished in Fgf-10(-/-) mice. Strikingly, Fgf-10(-/-) fetuses continued to develop until birth, despite the complete absence of both fore- and hindlimbs. Fgf-10 is necessary for apical ectodermal ridge (AER) formation and acts epistatically upstream of Fgf-8, the earliest known AER marker in mice. Fgf-10(-/-) mice exhibited perinatal lethality associated with complete absence of lungs. Although tracheal development was normal, main-stem bronchial formation, as well as all subsequent pulmonary branching morphogenesis, was completely disrupted. The pulmonary phenotype of Fgf-10(-/-) mice is strikingly similar to that of the Drosophila mutant branchless, an Fgf homolog.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                10 June 2009
                : 4
                : 6
                : e5845
                Affiliations
                [1 ]Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
                [2 ]Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark
                Harvard University, United States of America
                Author notes

                Conceived and designed the experiments: EB MCJ PS AGB. Performed the experiments: EB MCJ AGB. Analyzed the data: EB MCJ PS AGB. Contributed reagents/materials/analysis tools: EB MCJ PS. Wrote the paper: EB MCJ PS AGB.

                Article
                08-PONE-RA-07530R1
                10.1371/journal.pone.0005845
                2690404
                19516907
                3d365ebf-1129-40db-8746-21810130beda
                Bayha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 November 2008
                : 24 April 2009
                Page count
                Pages: 15
                Categories
                Research Article
                Developmental Biology
                Developmental Biology/Cell Differentiation
                Developmental Biology/Developmental Molecular Mechanisms
                Developmental Biology/Embryology
                Developmental Biology/Molecular Development
                Developmental Biology/Pattern Formation

                Uncategorized
                Uncategorized

                Comments

                Comment on this article