16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of lipid droplet (LD) formation in hepatocytes via regulation of SREBP1c by non-coding RNAs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Increased de novo lipogenesis (DNL) is one of the key factors contributing to fat accumulation and non-alcoholic fatty liver disease (NAFLD). Among the critical transcription factors (TFs) regulating DNL is mTOR and its downstream lipogenic TF, SREBP1c. In recent years, it has been established that non-coding RNAs (ncRNAs) play role in both biological processes and disease pathogenesis. Our group has previously characterized microRNAs that can target and regulate the expression of both mTOR and SREBP1c. Accordingly, this study aimed to broaden our understanding of the role of ncRNAs in regulating the mTOR/SREBP1c axis to elucidate the role of the non-coding transcriptome in DNL and lipid droplet (LD) formation. Hence, short ncRNA, miR-615-5p, and long non-coding RNA (lncRNA), H19, were chosen as they were previously proven to target mTOR by our group and in the published literature, respectively.

          Methodology

          Huh-7 cells were treated with 800 μM oleic acid (OA) to promote LD formation. Transfection of miR-615-5p mimics or H19 over-expression vectors was performed, followed by the measurement of their downstream targets, mTOR and SREBP, on the mRNA level by quantitative real-time PCR (qRT-PCR), and on the protein level by Western blot. To determine the functional impact of miR-615-5p and H19 on LD formation and triglyceride (TG) accumulation, post-transfection LDs were stained, imaged, and characterized, and TGs were extracted and quantified.

          Results

          miR-615-5p was able to reduce mTOR and SREBP1c significantly on both the mRNA and protein levels compared to control cells, while H19 caused a reduction of both targets on the protein level only. Both miR-615-5p and H19 were able to significantly reduce the LD count and total area, as well as TG levels compared to control cells.

          Conclusion

          To conclude, this study shows, for the first time, the impact of miR-615-5p and H19 on the mTOR/SREBP1c axis, and thus, their functional impact on LDs and TG accumulation. These findings might pave the way for using ncRNAs as potential therapeutic targets in the management of fatty liver.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA biogenesis: coordinated cropping and dicing.

          The recent discovery of microRNAs (miRNAs) took many by surprise because of their unorthodox features and widespread functions. These tiny, approximately 22-nucleotide, RNAs control several pathways including developmental timing, haematopoiesis, organogenesis, apoptosis, cell proliferation and possibly even tumorigenesis. Among the most pressing questions regarding this unusual class of regulatory miRNA-encoding genes is how miRNAs are produced in cells and how the genes themselves are controlled by various regulatory networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth

            Summary Cell growth (accumulation of mass) needs to be coordinated with metabolic processes that are required for the synthesis of macromolecules. The PI3-kinase/Akt signaling pathway induces cell growth via activation of complex 1 of the target of rapamycin (TORC1). Here we show that Akt-dependent lipogenesis requires mTORC1 activity. Furthermore, nuclear accumulation of the mature form of the sterol responsive element binding protein (SREBP1) and expression of SREBP target genes was blocked by the mTORC1 inhibitor rapamycin. We also show that silencing of SREBP blocks Akt-dependent lipogenesis and attenuates the increase in cell size in response to Akt activation in vitro. Silencing of dSREBP in flies caused a reduction in cell and organ size and blocked the induction of cell growth by dPI3K. Our results suggest that the PI3K/Akt/TOR pathway regulates protein and lipid biosynthesis in an orchestrated manner and that both processes are required for cell growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The lipid droplet is an important organelle for hepatitis C virus production.

              The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                20 September 2022
                2022
                : 9
                : 903856
                Affiliations
                [1] 1School of Medicine, Newgiza University (NGU) , Giza, Egypt
                [2] 2Clinical Chemistry Department, Theodor Bilharz Research Institute , Giza, Egypt
                Author notes

                Edited by: Reda Elwakil, Ain Shams University, Egypt

                Reviewed by: Yasser Fouad, Minia University, Egypt; Madhulika Tripathi, Duke-NUS Medical School, Singapore

                *Correspondence: Ahmed I. Abdelaziz aihab@ 123456ngu.edu.eg

                This article was submitted to Gastroenterology, a section of the journal Frontiers in Medicine

                Article
                10.3389/fmed.2022.903856
                9530594
                3cffab3d-d80f-481e-a032-42f46f340f10
                Copyright © 2022 El Sobky, Aboud, El Assaly, Fawzy, El-Ekiaby and Abdelaziz.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 March 2022
                : 25 August 2022
                Page count
                Figures: 12, Tables: 0, Equations: 0, References: 56, Pages: 15, Words: 8269
                Categories
                Medicine
                Original Research

                srebp1c,mtor,ncrnas,nafld,de novo lipogenesis (dnl)
                srebp1c, mtor, ncrnas, nafld, de novo lipogenesis (dnl)

                Comments

                Comment on this article