3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bacterial Diseases in Honeybees

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          American Foulbrood in honeybees and its causative agent, Paenibacillus larvae.

          After more than a century of American Foulbrood (AFB) research, this fatal brood infection is still among the most deleterious bee diseases. Its etiological agent is the Gram-positive, spore-forming bacterium Paenibacillus larvae. Huge progress has been made, especially in the last 20 years, in the understanding of the disease and of the underlying host-pathogen interactions. This review will place these recent developments in the study of American Foulbrood and of P. larvae into the general context of AFB research. Copyright 2009 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation.

            A polyphasic taxonomic study of the two subspecies of Paenibacillus larvae, Paenibacillus larvae subsp. larvae and Paenibacillus larvae subsp. pulvifaciens, supported the reclassification of the subspecies into one species, Paenibacillus larvae, without subspecies separation. Our conclusions are based on the analysis of six reference strains of P. larvae subsp. pulvifaciens and three reference strains and 44 field isolates of P. larvae. subsp. larvae. The latter originated from brood or honey of clinically diseased honey bee colonies or from honey of both clinically diseased and asymptomatic colonies from Sweden, Finland and Germany. Colony and spore morphology, as well as the metabolism of mannitol and salicin, did not allow a clear identification of the two subspecies and SDS-PAGE of whole-cell proteins did not support the subspecies differentiation. For genomic fingerprinting, repetitive element-PCR fingerprinting using ERIC primers and PFGE of bacterial DNA were performed. The latter method is a high-resolution DNA fingerprinting method proven to be superior to most other methods for biochemical and molecular typing and has not previously been used to characterize P. larvae. ERIC-PCR identified four different genotypes, while PFGE revealed two main clusters. One cluster included most of the P. larvae subsp. larvae field isolates, as well as all P. larvae subsp. pulvifaciens reference strains. The other cluster comprised the pigmented variants of P. larvae subsp. larvae. 16S rRNA gene sequences were determined for some strains. Finally, exposure bioassays demonstrated that reference strains of P. larvae subsp. pulvifaciens were pathogenic for honey bee larvae, producing symptoms similar to reference strains of P. larvae subsp. larvae. In comparison with the type strain for P. larvae subsp. larvae, ATCC 9545T, the P. larvae subsp. pulvifaciens strains tested were even more virulent, since they showed a shorter LT100. An emended description of the species is given.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Implications of horizontal and vertical pathogen transmission for honey bee epidemiology

                Bookmark

                Author and article information

                Journal
                Current Clinical Microbiology Reports
                Curr Clin Micro Rpt
                Springer Nature
                2196-5471
                March 2018
                January 16 2018
                March 2018
                : 5
                : 1
                : 18-25
                Article
                10.1007/s40588-018-0083-0
                3cfa8e8b-1230-4dca-9138-beb17cea1d62
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article