20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Persistence of two coronaviruses and efficacy of steam vapor disinfection on two types of carpet

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Coronaviruses, a group of highly transmissible and potentially pathogenic viruses, can be transmitted indirectly to humans via fomites. To date, no study has investigated their persistence on carpet fibers. Establishing persistence is essential before testing the efficacy of a disinfectant.

          Methods

          The persistence of BCoV and HCoV OC43 on polyethylene terephthalate (PET) and nylon carpet was first determined using infectivity and RT-qPCR assays. Then, the disinfectant efficacy of steam vapor was evaluated against both coronaviruses on nylon carpet.

          Results

          Immediately after inoculation of carpet coupons, 32.50% of BCoV and 3.87% of HCoV OC43 were recovered from PET carpet, compared to 34.86% of BCoV and 24.37% of HCoV OC43 recovered from nylon carpet. After incubation at room temperature for 1 h, BCoV and HCoV OC43 showed a 3.6 and > 2.8 log 10 TCID 50 reduction on PET carpet, and a 0.6 and 1.8 log 10 TCID 50 reduction on nylon carpet. Based on first-order decay kinetics, the whole gRNA of BCoV and HCoV OC43 were stable with k values of 1.19 and 0.67 h − 1 on PET carpet and 0.86 and 0.27 h − 1 on nylon carpet, respectively. A 15-s steam vapor treatment achieved a > 3.0 log 10 TCID 50 reduction of BCoV and > 3.2 log 10 TCID 50 reduction of HCoV OC43 on nylon carpet.

          Conclusion

          BCoV was more resistant to desiccation on both carpet types than HCoV OC43. Both viruses lost infectivity quicker on PET carpet than on nylon carpet. Steam vapor inactivated both coronaviruses on nylon carpet within 15 s.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found

          Emerging coronaviruses: Genome structure, replication, and pathogenesis

          Abstract The recent emergence of a novel coronavirus (2019‐nCoV), which is causing an outbreak of unusual viral pneumonia in patients in Wuhan, a central city in China, is another warning of the risk of CoVs posed to public health. In this minireview, we provide a brief introduction of the general features of CoVs and describe diseases caused by different CoVs in humans and animals. This review will help understand the biology and potential risk of CoVs that exist in richness in wildlife such as bats.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of SARS-CoV-2 entry into cells

            The unprecedented public health and economic impact of the COVID-19 pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been met with an equally unprecedented scientific response. Much of this response has focused, appropriately, on the mechanisms of SARS-CoV-2 entry into host cells, and in particular the binding of the spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequent membrane fusion. This Review provides the structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the S protein with ACE2, engagement of the receptor-binding domain of the S protein with ACE2, proteolytic activation of the S protein, endocytosis and membrane fusion. We define the roles of furin-like proteases, transmembrane protease, serine 2 (TMPRSS2) and cathepsin L in these processes, and delineate the features of ACE2 orthologues in reservoir animal species and S protein adaptations that facilitate efficient human transmission. We also examine the utility of vaccines, antibodies and other potential therapeutics targeting SARS-CoV-2 entry mechanisms. Finally, we present key outstanding questions associated with this critical process. Entry of SARS-CoV-2 into host cells is mediated by the interaction between the viral spike protein and its receptor angiotensin-converting enzyme 2, followed by virus–cell membrane fusion. Worldwide research efforts have provided a detailed understanding of this process at the structural and cellular levels, enabling successful vaccine development for a rapid response to the COVID-19 pandemic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV

              Severe acute respiratory syndrome (SARS) is a life-threatening disease caused by a novel coronavirus termed SARS-CoV. Due to the severity of this disease, the World Health Organization (WHO) recommends that manipulation of active viral cultures of SARS-CoV be performed in containment laboratories at biosafety level 3 (BSL3). The virus was inactivated by ultraviolet light (UV) at 254 nm, heat treatment of 65 °C or greater, alkaline (pH > 12) or acidic (pH < 3) conditions, formalin and glutaraldehyde treatments. We describe the kinetics of these efficient viral inactivation methods, which will allow research with SARS-CoV containing materials, that are rendered non-infectious, to be conducted at reduced safety levels.
                Bookmark

                Author and article information

                Contributors
                xiuping@clemson.edu
                Journal
                Virol J
                Virol J
                Virology Journal
                BioMed Central (London )
                1743-422X
                2 September 2024
                2 September 2024
                2024
                : 21
                : 207
                Affiliations
                Department of Food, Nutrition, and Packaging Sciences, Clemson University, ( https://ror.org/037s24f05) 228A Life Science Facility, Clemson, SC 29634 USA
                Article
                2478
                10.1186/s12985-024-02478-9
                11367742
                39223556
                3cd5d0bf-1b14-42f7-91e5-15069d0c5a3e
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 June 2024
                : 20 August 2024
                Funding
                Funded by: Clemson University
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Microbiology & Virology
                bovine coronavirus,human coronavirus oc43,carpet,persistence,steam vapor disinfection

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content224

                Most referenced authors954