51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Widespread Cryptic Species and Phylogeographic Patterns within Several Giant Clam Species (Cardiidae: Tridacna) from the Indo-Pacific Ocean

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Giant clams (genus Tridacna) are iconic coral reef animals of the Indian and Pacific Oceans, easily recognizable by their massive shells and vibrantly colored mantle tissue. Most Tridacna species are listed by CITES and the IUCN Redlist, as their populations have been extensively harvested and depleted in many regions. Here, we survey Tridacna crocea and Tridacna maxima from the eastern Indian and western Pacific Oceans for mitochondrial ( COI and 16S) and nuclear ( ITS) sequence variation and consolidate these data with previous published results using phylogenetic analyses. We find deep intraspecific differentiation within both T. crocea and T. maxima. In T. crocea we describe a previously undocumented phylogeographic division to the east of Cenderawasih Bay (northwest New Guinea), whereas for T. maxima the previously described, distinctive lineage of Cenderawasih Bay can be seen to also typify western Pacific populations. Furthermore, we find an undescribed, monophyletic group that is evolutionarily distinct from named Tridacna species at both mitochondrial and nuclear loci. This cryptic taxon is geographically widespread with a range extent that minimally includes much of the central Indo-Pacific region. Our results reinforce the emerging paradigm that cryptic species are common among marine invertebrates, even for conspicuous and culturally significant taxa. Additionally, our results add to identified locations of genetic differentiation across the central Indo-Pacific and highlight how phylogeographic patterns may differ even between closely related and co-distributed species.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          A threat to coral reefs multiplied? Four species of crown-of-thorns starfish.

          In the face of ever-increasing threats to coral reef ecosystems, it is essential to understand the impact of natural predators in order to devise appropriate management strategies. Destructive population explosions of the crown-of-thorns starfish Acanthaster planci have devastated coral reefs throughout the Indo-Pacific for decades. But despite extensive research, the causes of outbreaks are still unclear. An important consideration in this research is that A. planci has been regarded as a single taxonomic entity. Using molecular data from its entire distribution, we find that A. planci is in fact a species complex. This discovery has important consequences for future coral reef research, and might prove critical for successful reef conservation management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strong genetic population structure in the boring giant clam, Tridacna crocea, across the Indo-Malay Archipelago: implications related to evolutionary processes and connectivity.

            Even though the Indo-Malay Archipelago hosts the world's greatest diversity of marine species, studies on the genetic population structure and gene flow of marine organisms within this area are rather rare. Consequently, not much is known about connectivity of marine populations in the Indo-Malay Archipelago, despite the fact that such information is important to understand evolutionary and ecological processes in the centre of marine biodiversity. This study aims to investigate the genetic population structure of the boring giant clam, Tridacna crocea. The analysis is based on a 456-bp fragment of the cytochrome oxidase I gene from 300 individuals collected from 15 localities across the Indo-Malay Archipelago. Tridacna crocea shows a very strong genetic population structure and isolation by distance, indicating restricted gene flow between almost all sample sites. The observed Phi(ST)-value of 0.28 is very high compared to other studies on giant clams. According to the pronounced genetic differences, the sample sites can be divided into four groups from West to East: (i) Eastern Indian Ocean, (ii) Java Sea, (iii) South China Sea, Indonesian throughflow, as well as seas in the East of Sulawesi, and (iv) Western Pacific. This complex genetic population structure and pattern of connectivity, characterised by restricted gene flow between some sites and panmixing between others can be attributed to the geological history and prevailing current regimes in the Indo-Malay Archipelago.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the Coral Triangle.

              The Indonesian-Australian Archipelago is the center of the world's marine biodiversity. Although many biogeographers have suggested that this region is a "center of origin," criticism of this theory has focused on the absence of processes promoting lineage diversification in the center. In this study we compare patterns of phylogeographic structure and gene flow in three codistributed, ecologically similar Indo-West Pacific stomatopod (mantis shrimp) species. All three taxa show evidence for limited gene flow across the Maluku Sea with deep genetic breaks between populations from Papua and Northern Indonesia, suggesting that limited water transport across the Maluku Sea may limit larval dispersal and gene flow across this region. All three taxa also show moderate to strong genetic structure between populations from Northern and Southern Indonesia, indicating limited gene flow across the Flores and Java Seas. Despite the similarities in phylogeographic structure, results indicate varied ages of the genetic discontinuities, ranging from the middle Pleistocene to the Pliocene. Concordance of genetic structure across multiple taxa combined with temporal discordance suggests that regional genetic structures have arisen from the action of common physical processes operating over extended time periods. The presence in all three species of both intraspecific genetic structure as well as deeply divergent lineages that likely represent cryptic species suggests that these processes may promote lineage diversification within the Indonesian-Australian Archipelago, providing a potential mechanism for the center of origin. Efforts to conserve biodiversity in the Coral Triangle should work to preserve both existing biodiversity as well as the processes creating the biodiversity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                20 November 2013
                : 8
                : 11
                : e80858
                Affiliations
                [1 ]The University of Queensland, School of Biological Sciences, St Lucia, Australia
                [2 ]Charles Darwin University, Research Institute for Environment and Livelihoods, Casuarina, Australia
                [3 ]University of Melbourne, Department of Zoology, Melbourne, Australia
                University of Texas, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TH JK LL SP EAT CR. Performed the experiments: TH JK LL SP EAT CR. Analyzed the data: TH JK SP CR. Contributed reagents/materials/analysis tools: TH JK SP EAT CR. Wrote the paper: CR JK TH LL.

                Article
                PONE-D-13-31089
                10.1371/journal.pone.0080858
                3835327
                24278333
                3cc9375a-1646-4cdb-b82b-27b9593d6523
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 July 2013
                : 14 October 2013
                Page count
                Pages: 10
                Funding
                Funding for this work was provided by the Australian Research Council ( www.arc.gov.au, DP0878306 to CR), the German Research Foundation ( www.dfg.de/en, DFG, Hu 1806/1-1, Hu 1806/2-1 to TH), the World Wildlife Fund (worldwildlife.org/initiatives/fuller-science-for-nature-fund, Kathryn Fuller Post-doctoral Research Fellowship to EAT), the Malacological Society of Australasia ( www.malsocaus.org, to TH), and the Joyce Vickery Fund (linneansocietynsw.org.au/grants.html, to JK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article