3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of microRNA-221-5p induces osteogenic differentiation by directly targeting smad3 in myeloma bone disease mesenchymal stem cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myeloma bone disease (MBD) is one of the clinical features of multiple myeloma, which contributes to the attenuation of osteoblast function. Bone marrow mesenchymal stem cells exhibit a high potential for differentiation into osteoblasts. A number of studies have reported that microRNAs (miRs) serve a vital role in mesenchymal stem cell (MSC) osteogenesis; however, the role of miR-221-5p in the osteogenic differentiation of MBD-MSCs remains unclear. The present study revealed that the osteogenic differentiation capacity of MBD-MSCs was reduced compared with that of normal (N)-MSCs. Further experiments demonstrated that miR-221-5p expression was downregulated in N-MSCs following osteoblast induction while no obvious alterations in expression levels were observed in MBD-MSCs. The inhibition of miR-221-5p promoted the osteogenic differentiation of MBD-MSCs. Bioinformatics, luciferase reporter assays, reverse transcription-quantitative PCR and western blotting assays indicated that smad family member 3 (smad3) was a direct target of miR-221-5p in MBD-MSCs. A negative association was identified between the expression levels of smad3 and miR-221-5p. Investigations of the molecular mechanism indicated that suppressed miR-221-5p could regulate the osteogenic differentiation of MBD-MSCs by upregulating smad3 expression. It was also identified that the PI3K/AKT/mTOR signaling pathway was activated following miR-221-5p inhibition, and this increased the osteogenic differentiation capacity of MBD-MSCs. The present study may improve the understanding regarding the role of miR-221-5p in the regulation of osteogenic differentiation, and may contribute to the development of a novel therapy for MBD.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Therapeutic approaches to bone diseases.

          The strength and integrity of our bones depends on maintaining a delicate balance between bone resorption by osteoclasts and bone formation by osteoblasts. As we age or as a result of disease, this delicate balancing act becomes tipped in favor of osteoclasts so that bone resorption exceeds bone formation, rendering bones brittle and prone to fracture. A better understanding of the biology of osteoclasts and osteoblasts is providing opportunities for developing therapeutics to treat diseases of bone. Drugs that inhibit the formation or activity of osteoclasts are valuable for treating osteoporosis, Paget's disease, and inflammation of bone associated with rheumatoid arthritis or periodontal disease. Far less attention has been paid to promoting bone formation with, for example, growth factors or hormones, an approach that would be a valuable adjunct therapy for patients receiving inhibitors of bone resorption.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Smads: transcriptional activators of TGF-beta responses.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A microRNA regulatory mechanism of osteoblast differentiation.

              Growing evidence shows that microRNAs (miRNAs) regulate various developmental and homeostatic events in vertebrates and invertebrates. Osteoblast differentiation is a key step in proper skeletal development and acquisition of bone mass; however, the physiological role of non-coding small RNAs, especially miRNAs, in osteoblast differentiation remains elusive. Here, through comprehensive analysis of miRNAs expression during osteoblast differentiation, we show that miR-206, previously viewed as a muscle-specific miRNA, is a key regulator of this process. miR-206 was expressed in osteoblasts, and its expression decreased over the course of osteoblast differentiation. Overexpression of miR-206 in osteoblasts inhibited their differentiation, and conversely, knockdown of miR-206 expression promoted osteoblast differentiation. In silico analysis and molecular experiments revealed connexin 43 (Cx43), a major gap junction protein in osteoblasts, as a target of miR-206, and restoration of Cx43 expression in miR-206-expressing osteoblasts rescued them from the inhibitory effect of miR-206 on osteoblast differentiation. Finally, transgenic mice expressing miR-206 in osteoblasts developed a low bone mass phenotype due to impaired osteoblast differentiation. Our data show that miRNA is a regulator of osteoblast differentiation.
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                December 2019
                17 October 2019
                17 October 2019
                : 18
                : 6
                : 6536-6544
                Affiliations
                [1 ]Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
                [2 ]Department of Hematology and Hematopoetic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
                Author notes
                Correspondence to: Professor Yi Su, Department of Hematology and Hematopoetic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, 270 Tianhui Road, Chengdu, Sichuan 610083, P.R. China, E-mail: suhang1234@ 123456hotmail.com
                Professor Xi Zhang, Department of Hematology, Xinqiao Hospital, Army Medical University, 83 Xinqiao Main Street, Chongqing, Sichuan 400037, P.R. China, E-mail: zhangxxi@ 123456sina.com
                Article
                OL-0-0-10992
                10.3892/ol.2019.10992
                6865756
                31788114
                3c9a4017-b837-4d59-bc8d-1310600ddade
                Copyright: © Fan et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 12 November 2018
                : 14 June 2019
                Categories
                Articles

                Oncology & Radiotherapy
                myeloma bone disease,bone marrow mesenchymal stem cell,microrna-221-5p,smad family member 3,pi3k/akt/mtor

                Comments

                Comment on this article