38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          In 2012, the first cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) were identified. Since then, more than 1,000 cases of MERS-CoV infection have been confirmed; infection is typically associated with considerable morbidity and, in approximately 30% of cases, mortality. Currently, there is no protective vaccine available. Replication-competent recombinant measles virus (MV) expressing foreign antigens constitutes a promising tool to induce protective immunity against corresponding pathogens. Therefore, we generated MVs expressing the spike glycoprotein of MERS-CoV in its full-length (MERS-S) or a truncated, soluble variant of MERS-S (MERS-solS). The genes encoding MERS-S and MERS-solS were cloned into the vaccine strain MV vac2genome, and the respective viruses were rescued (MV vac2-CoV-S and MV vac2-CoV-solS). These recombinant MVs were amplified and characterized at passages 3 and 10. The replication of MV vac2-CoV-S in Vero cells turned out to be comparable to that of the control virus MV vac2-GFP (encoding green fluorescent protein), while titers of MV vac2-CoV-solS were impaired approximately 3-fold. The genomic stability and expression of the inserted antigens were confirmed via sequencing of viral cDNA and immunoblot analysis. In vivo, immunization of type I interferon receptor-deficient (IFNAR −/−)-CD46Ge mice with 2 × 10 550% tissue culture infective doses of MV vac2-CoV-S(H) or MV vac2-CoV-solS(H) in a prime-boost regimen induced robust levels of both MV- and MERS-CoV-neutralizing antibodies. Additionally, induction of specific T cells was demonstrated by T cell proliferation, antigen-specific T cell cytotoxicity, and gamma interferon secretion after stimulation of splenocytes with MERS-CoV-S presented by murine dendritic cells. MERS-CoV challenge experiments indicated the protective capacity of these immune responses in vaccinated mice.

          IMPORTANCEAlthough MERS-CoV has not yet acquired extensive distribution, being mainly confined to the Arabic and Korean peninsulas, it could adapt to spread more readily among humans and thereby become pandemic. Therefore, the development of a vaccine is mandatory. The integration of antigen-coding genes into recombinant MV resulting in coexpression of MV and foreign antigens can efficiently be achieved. Thus, in combination with the excellent safety profile of the MV vaccine, recombinant MV seems to constitute an ideal vaccine platform. The present study shows that a recombinant MV expressing MERS-S is genetically stable and induces strong humoral and cellular immunity against MERS-CoV in vaccinated mice. Subsequent challenge experiments indicated protection of vaccinated animals, illustrating the potential of MV as a vaccine platform with the potential to target emerging infections, such as MERS-CoV.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.

          A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC

            Human coronavirus-EMC (hCoV-EMC) is a new coronavirus that has killed around half of the few humans infected so far; this study now identifies DPP4 as the receptor that this virus uses to infect cells. Supplementary information The online version of this article (doi:10.1038/nature12005) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              M-1/M-2 Macrophages and the Th1/Th2 Paradigm

              Evidence is provided that macrophages can make M-1 or M-2 responses. The concept of M-1/M-2 fomented from observations that macrophages from prototypical Th1 strains (C57BL/6, B10D2) are more easily activated to produce NO with either IFN-gamma or LPS than macrophages from Th2 strains (BALB/c, DBA/2). In marked contrast, LPS stimulates Th2, but not Th1, macrophages to increase arginine metabolism to ornithine. Thus, M-1/M-2 does not simply describe activated or unactivated macrophages, but cells expressing distinct metabolic programs. Because NO inhibits cell division, while ornithine can stimulate cell division (via polyamines), these results also indicate that M-1 and M-2 responses can influence inflammatory reactions in opposite ways. Macrophage TGF-beta1, which inhibits inducible NO synthase and stimulates arginase, appears to play an important role in regulating the balance between M-1 and M-2. M-1/M-2 phenotypes are independent of T or B lymphocytes because C57BL/6 and BALB/c NUDE or SCID macrophages also exhibit M-1/M-2. Indeed, M-1/M-2 proclivities are magnified in NUDE and SCID mice. Finally, C57BL/6 SCID macrophages cause CB6F1 lymphocytes to increase IFN-gamma production, while BALB/c SCID macrophages increase TGF-beta production. Together, the results indicate that M-1- or M-2-dominant macrophage responses can influence whether Th1/Th2 or other types of inflammatory responses occur.
                Bookmark

                Author and article information

                Journal
                Journal of Virology
                J. Virol.
                American Society for Microbiology
                0022-538X
                1098-5514
                October 22 2015
                November 15 2015
                November 15 2015
                September 09 2015
                : 89
                : 22
                : 11654-11667
                Article
                10.1128/JVI.01815-15
                26355094
                3c7f3402-d869-412c-a87a-abeaba51251b
                © 2015
                History

                Comments

                Comment on this article