17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa

      , , , , ,
      Global Change Biology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Rebuilding community ecology from functional traits.

          There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insect overwintering in a changing climate.

              Insects are highly successful animals inhabiting marine, freshwater and terrestrial habitats from the equator to the poles. As a group, insects have limited ability to regulate their body temperature and have thus required a range of strategies to support life in thermally stressful environments, including behavioural avoidance through migration and seasonal changes in cold tolerance. With respect to overwintering strategies, insects have traditionally been divided into two main groups: freeze tolerant and freeze avoiding, although this simple classification is underpinned by a complex of interacting processes, i.e. synthesis of ice nucleating agents, cryoprotectants, antifreeze proteins and changes in membrane lipid composition. Also, in temperate and colder climates, the overwintering ability of many species is closely linked to the diapause state, which often increases cold tolerance ahead of temperature-induced seasonal acclimatisation. Importantly, even though most species can invoke one or both of these responses, the majority of insects die from the effects of cold rather than freezing. Most studies on the effects of a changing climate on insects have focused on processes that occur predominantly in summer (development, reproduction) and on changes in distributions rather than winter survival per se. For species that routinely experience cold stress, a general hypothesis would be that predicted temperature increases of 1 degree C to 5 degrees C over the next 50-100 years would increase winter survival in some climatic zones. However, this is unlikely to be a universal effect. Negative impacts may occur if climate warming leads to a reduction or loss of winter snow cover in polar and sub-polar areas, resulting in exposure to more severe air temperatures, increasing frequency of freeze-thaw cycles and risks of ice encasement. Likewise, whilst the dominant diapause-inducing cue (photoperiod) will be unaffected by global climate change, higher temperatures may modify normal rates of development, leading to a decoupling of synchrony between diapause-sensitive life-cycle stages and critical photoperiods for diapause induction. In terms of climate warming and potential heat stress, the most recent predictions of summer temperatures in Europe of 40 degrees C or higher in 50-75 years, are close to the current upper lethal limit of some insects. Long-term data sets on insect distributions and the timing of annual migrations provide strong evidence for 'positive' responses to higher winter temperatures over timescales of the past 20-50 years in North America, Europe and Asia.
                Bookmark

                Author and article information

                Journal
                Global Change Biology
                Glob Change Biol
                Wiley-Blackwell
                13541013
                March 2012
                March 2012
                : 18
                : 3
                : 1152-1162
                Article
                10.1111/j.1365-2486.2011.02565.x
                3c5b7ca4-2bcd-4a88-aa18-acfe23bec7f7
                © 2012

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article