1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cenobamate (XCOPRI): Can preclinical and clinical evidence provide insight into its mechanism of action?

      1 , 1 , 1
      Epilepsia
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of Action of Currently Used Antiseizure Drugs

          Antiseizure drugs (ASDs) prevent the occurrence of seizures; there is no evidence that they have disease-modifying properties. In the more than 160 years that orally administered ASDs have been available for epilepsy therapy, most agents entering clinical practice were either discovered serendipitously or with the use of animal seizure models. The ASDs originating from these approaches act on brain excitability mechanisms to interfere with the generation and spread of epileptic hyperexcitability, but they do not address the specific defects that are pathogenic in the epilepsies for which they are prescribed, which in most cases are not well understood. There are four broad classes of such ASD mechanisms: (1) modulation of voltage-gated sodium channels (e.g. phenytoin, carbamazepine, lamotrigine), voltage-gated calcium channels (e.g. ethosuximide), and voltage-gated potassium channels [e.g. retigabine (ezogabine)]; (2) enhancement of GABA-mediated inhibitory neurotransmission (e.g. benzodiazepines, tiagabine, vigabatrin); (3) attenuation of glutamate-mediated excitatory neurotransmission (e.g. perampanel); and (4) modulation of neurotransmitter release via a presynaptic action (e.g. levetiracetam, brivaracetam, gabapentin, pregabalin). In the past two decades there has been great progress in identifying the pathophysiological mechanisms of many genetic epilepsies. Given this new understanding, attempts are being made to engineer specific small molecule, antisense and gene therapies that functionally reverse or structurally correct pathogenic defects in epilepsy syndromes. In the near future, these new therapies will begin a paradigm shift in the treatment of some rare genetic epilepsy syndromes, but targeted therapies will remain elusive for the vast majority of epilepsies until their causes are identified. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy.

            Originally described as a model of 'psychomotor seizures' (J. Pharmacol. Exp. Ther. (1953) 107-273), the 6 Hz corneal stimulation model was abandoned shortly after its description because of its lack of sensitivity to phenytoin. This observation is the basis for the present study designed to validate the 6 Hz seizure as a model of therapy-resistant epilepsy. The pharmacological profile of the 6 Hz seizure was determined at varying current intensities using seven established AEDs (phenytoin, carbamazepine, clonazepam, phenobarbital, ethosuximide, trimethadione, valproic acid) and five second-generation AEDs (lamotrigine, levetiracetam, felbamate, tiagabine, topiramate). The immediate early gene c-Fos was used as a marker of seizure-induced neuronal activation to help define those brain structures that were activated by 6 Hz corneal stimulation. At the current intensity required to produce a seizure in 97% of the population (CC97=22 mA), the 6 Hz seizure did not discriminate between clinical classes of AEDs tested. Increasing the current intensity by 50% (i.e. 32 mA) decreased the sensitivity of the 6 Hz seizure to phenytoin and lamotrigine. At a current intensity of 2 x CC97 (i.e. 44 mA), only two AEDs, levetiracetam and valproic acid, displayed complete protection against the 6 Hz seizure, though the efficacy of these drugs was reduced when compared to the lower stimulation intensities. Intense c-Fos staining from 6 Hz seizures induced by 22 and 32 mA stimulus intensities remained localized to the amygdala and piriform cortex. Increasing the stimulus intensity to 44 mA resulted in additional heavy staining of the dentate gyrus. This recruitment of the dentate gyrus may account for the decrease in potency of levetiracetam and valproic acid at 44 mA. The pharmacological results combined with the c-Fos immunohistochemistry suggest that the 6 Hz stimulation may provide a useful model of therapy-resistant limbic seizures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: a multicentre, double-blind, randomised, placebo-controlled, dose-response trial

              More than a third of patients with epilepsy are treatment resistant, and thus new, more effective therapies to achieve seizure freedom are needed. Cenobamate (YKP3089), an investigational antiepileptic drug, has shown broad-spectrum anticonvulsant activity in preclinical studies and seizure models. We aimed to evaluate the safety, efficacy, and tolerability of adjunctive cenobamate in patients with uncontrolled focal (partial)-onset epilepsy.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Epilepsia
                Epilepsia
                Wiley
                0013-9580
                1528-1167
                November 2020
                October 16 2020
                November 2020
                : 61
                : 11
                : 2329-2339
                Affiliations
                [1 ]Department of Pharmacy School of Pharmacy University of Washington Seattle WA USA
                Article
                10.1111/epi.16718
                33063849
                3c36ef8b-de56-483c-958e-61137440db83
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article