26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ecogenomics and Taxonomy of Cyanobacteria Phylum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyanobacteria are major contributors to global biogeochemical cycles. The genetic diversity among Cyanobacteria enables them to thrive across many habitats, although only a few studies have analyzed the association of phylogenomic clades to specific environmental niches. In this study, we adopted an ecogenomics strategy with the aim to delineate ecological niche preferences of Cyanobacteria and integrate them to the genomic taxonomy of these bacteria. First, an appropriate phylogenomic framework was established using a set of genomic taxonomy signatures (including a tree based on conserved gene sequences, genome-to-genome distance, and average amino acid identity) to analyse ninety-nine publicly available cyanobacterial genomes. Next, the relative abundances of these genomes were determined throughout diverse global marine and freshwater ecosystems, using metagenomic data sets. The whole-genome-based taxonomy of the ninety-nine genomes allowed us to identify 57 (of which 28 are new genera) and 87 (of which 32 are new species) different cyanobacterial genera and species, respectively. The ecogenomic analysis allowed the distinction of three major ecological groups of Cyanobacteria (named as i. Low Temperature; ii. Low Temperature Copiotroph; and iii. High Temperature Oligotroph) that were coherently linked to the genomic taxonomy. This work establishes a new taxonomic framework for Cyanobacteria in the light of genomic taxonomy and ecogenomic approaches.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: not found
          • Article: not found

          Processes and patterns of oceanic nutrient limitation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison

            The pragmatic species concept for Bacteria and Archaea is ultimately based on DNA-DNA hybridization (DDH). While enabling the taxonomist, in principle, to obtain an estimate of the overall similarity between the genomes of two strains, this technique is tedious and error-prone and cannot be used to incrementally build up a comparative database. Recent technological progress in the area of genome sequencing calls for bioinformatics methods to replace the wet-lab DDH by in-silico genome-to-genome comparison. Here we investigate state-of-the-art methods for inferring whole-genome distances in their ability to mimic DDH. Algorithms to efficiently determine high-scoring segment pairs or maximally unique matches perform well as a basis of inferring intergenomic distances. The examined distance functions, which are able to cope with heavily reduced genomes and repetitive sequence regions, outperform previously described ones regarding the correlation with and error ratios in emulating DDH. Simulation of incompletely sequenced genomes indicates that some distance formulas are very robust against missing fractions of genomic information. Digitally derived genome-to-genome distances show a better correlation with 16S rRNA gene sequence distances than DDH values. The future perspectives of genome-informed taxonomy are discussed, and the investigated methods are made available as a web service for genome-based species delineation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus.

              The Cyanobacteria Prochlorococcus and Synechococcus account for a substantial fraction of marine primary production. Here, we present quantitative niche models for these lineages that assess present and future global abundances and distributions. These niche models are the result of neural network, nonparametric, and parametric analyses, and they rely on >35,000 discrete observations from all major ocean regions. The models assess cell abundance based on temperature and photosynthetically active radiation, but the individual responses to these environmental variables differ for each lineage. The models estimate global biogeographic patterns and seasonal variability of cell abundance, with maxima in the warm oligotrophic gyres of the Indian and the western Pacific Oceans and minima at higher latitudes. The annual mean global abundances of Prochlorococcus and Synechococcus are 2.9 ± 0.1 × 10(27) and 7.0 ± 0.3 × 10(26) cells, respectively. Using projections of sea surface temperature as a result of increased concentration of greenhouse gases at the end of the 21st century, our niche models projected increases in cell numbers of 29% and 14% for Prochlorococcus and Synechococcus, respectively. The changes are geographically uneven but include an increase in area. Thus, our global niche models suggest that oceanic microbial communities will experience complex changes as a result of projected future climate conditions. Because of the high abundances and contributions to primary production of Prochlorococcus and Synechococcus, these changes may have large impacts on ocean ecosystems and biogeochemical cycles.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                14 November 2017
                2017
                : 8
                : 2132
                Affiliations
                [1] 1Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
                [2] 2Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre , Nijmegen, Netherlands
                [3] 3Theoretical Biology and Bioinformatics, Utrecht University , Utrecht, Netherlands
                [4] 4Laboratory of Microbiology, Ghent University , Ghent, Belgium
                [5] 5Center of Technology - CT2, SAGE-COPPE, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
                Author notes

                Edited by: Ana Beatriz Furlanetto Pacheco, Universidade Federal do Rio de Janeiro, Brazil

                Reviewed by: Zhe-Xue Quan, Fudan University, China; Petr Dvorak, Palacký University, Olomouc, Czechia

                *Correspondence: Fabiano L. Thompson fabianothompson1@ 123456gmail.com

                This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.02132
                5694629
                29184540
                3c03d322-1e17-40a5-8e03-7a7a2dafc46a
                Copyright © 2017 Walter, Coutinho, Dutilh, Swings, Thompson and Thompson.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 May 2017
                : 18 October 2017
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 113, Pages: 18, Words: 12080
                Funding
                Funded by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 10.13039/501100003593
                Funded by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 10.13039/501100002322
                Funded by: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro 10.13039/501100004586
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                microbial ecology,ecological niches,charting biodiversity,genome-based microbial taxonomy,metagenome,high-throughput sequencing technology

                Comments

                Comment on this article