41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Diet tracing in ecology: Method comparison and selection

      , , , ,
      Methods in Ecology and Evolution
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Environmental DNA for wildlife biology and biodiversity monitoring.

          Extraction and identification of DNA from an environmental sample has proven noteworthy recently in detecting and monitoring not only common species, but also those that are endangered, invasive, or elusive. Particular attributes of so-called environmental DNA (eDNA) analysis render it a potent tool for elucidating mechanistic insights in ecological and evolutionary processes. Foremost among these is an improved ability to explore ecosystem-level processes, the generation of quantitative indices for analyses of species, community diversity, and dynamics, and novel opportunities through the use of time-serial samples and unprecedented sensitivity for detecting rare or difficult-to-sample taxa. Although technical challenges remain, here we examine the current frontiers of eDNA, outline key aspects requiring improvement, and suggest future developments and innovations for research. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Seawater Samples

            Marine ecosystems worldwide are under threat with many fish species and populations suffering from human over-exploitation. This is greatly impacting global biodiversity, economy and human health. Intriguingly, marine fish are largely surveyed using selective and invasive methods, which are mostly limited to commercial species, and restricted to particular areas with favourable conditions. Furthermore, misidentification of species represents a major problem. Here, we investigate the potential of using metabarcoding of environmental DNA (eDNA) obtained directly from seawater samples to account for marine fish biodiversity. This eDNA approach has recently been used successfully in freshwater environments, but never in marine settings. We isolate eDNA from ½-litre seawater samples collected in a temperate marine ecosystem in Denmark. Using next-generation DNA sequencing of PCR amplicons, we obtain eDNA from 15 different fish species, including both important consumption species, as well as species rarely or never recorded by conventional monitoring. We also detect eDNA from a rare vagrant species in the area; European pilchard (Sardina pilchardus). Additionally, we detect four bird species. Records in national databases confirmed the occurrence of all detected species. To investigate the efficiency of the eDNA approach, we compared its performance with 9 methods conventionally used in marine fish surveys. Promisingly, eDNA covered the fish diversity better than or equal to any of the applied conventional methods. Our study demonstrates that even small samples of seawater contain eDNA from a wide range of local fish species. Finally, in order to examine the potential dispersal of eDNA in oceans, we performed an experiment addressing eDNA degradation in seawater, which shows that even small (100-bp) eDNA fragments degrades beyond detectability within days. Although further studies are needed to validate the eDNA approach in varying environmental conditions, our findings provide a strong proof-of-concept with great perspectives for future monitoring of marine biodiversity and resources.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isotopic ecology ten years after a call for more laboratory experiments.

              About 10 years ago, reviews of the use of stable isotopes in animal ecology predicted explosive growth in this field and called for laboratory experiments to provide a mechanistic foundation to this growth. They identified four major areas of inquiry: (1) the dynamics of isotopic incorporation, (2) mixing models, (3) the problem of routing, and (4) trophic discrimination factors. Because these areas remain central to isotopic ecology, we use them as organising foci to review the experimental results that isotopic ecologists have collected in the intervening 10 years since the call for laboratory experiments. We also review the models that have been built to explain and organise experimental results in these areas.
                Bookmark

                Author and article information

                Journal
                Methods in Ecology and Evolution
                Methods Ecol Evol
                Wiley-Blackwell
                2041210X
                February 2018
                February 26 2018
                : 9
                : 2
                : 278-291
                Article
                10.1111/2041-210X.12869
                3c035eb0-3ae5-47fa-977f-b94dc8f4556c
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article