9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine Learning in Healthcare

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) technology have brought on substantial strides in predicting and identifying health emergencies, disease populations, and disease state and immune response, amongst a few. Although, skepticism remains regarding the practical application and interpretation of results from ML-based approaches in healthcare settings, the inclusion of these approaches is increasing at a rapid pace. Here we provide a brief overview of machine learning-based approaches and learning algorithms including supervised, unsupervised, and reinforcement learning along with examples. Second, we discuss the application of ML in several healthcare fields, including radiology, genetics, electronic health records, and neuroimaging. We also briefly discuss the risks and challenges of ML application to healthcare such as system privacy and ethical concerns and provide suggestions for future applications.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Dermatologist-level classification of skin cancer with deep neural networks

          Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets—consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nucleic acid detection with CRISPR-Cas13a/C2c2

            Rapid, inexpensive, and sensitive nucleic acid detection may aid point-of-care pathogen detection, genotyping, and disease monitoring. The RNA-guided, RNA-targeting CRISPR effector Cas13a (previously known as C2c2) exhibits a “collateral effect” of promiscuous RNAse activity upon target recognition. We combine the collateral effect of Cas13a with isothermal amplification to establish a CRISPR-based diagnostic (CRISPR-Dx), providing rapid DNA or RNA detection with attomolar sensitivity and single-base mismatch specificity. We use this Cas13a-based molecular detection platform, termed SHERLOCK ( S pecific H igh Sensitivity E nzymatic R eporter Un LOCK ing), to detect specific strains of Zika and Dengue virus, distinguish pathogenic bacteria, genotype human DNA, and identify cell-free tumor DNA mutations. Furthermore, SHERLOCK reaction reagents can be lyophilized for cold-chain independence and long-term storage, and readily reconstituted on paper for field applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              I.—COMPUTING MACHINERY AND INTELLIGENCE

              A Turing (1950)
                Bookmark

                Author and article information

                Journal
                Curr Genomics
                Curr Genomics
                CG
                Current Genomics
                Bentham Science Publishers
                1389-2029
                1875-5488
                16 December 2021
                16 December 2021
                : 22
                : 4
                : 291-300
                Affiliations
                [1 ]Department of Health Informatics, Rutgers University School of Health Professions, 65 Bergen Street, Newark, , NJ, 07107 , USA
                Author notes
                [* ]Address correspondence to this author at the Department of Health Informatics, Rutgers University School of Health Professions, 65 Bergen Street, Newark, NJ 07107, USA; Tel: 973-972-5039; E-mail: suril.gohel@ 123456rutgers.edu
                Article
                CG-22-291
                10.2174/1389202922666210705124359
                8822225
                35273459
                3c02de12-c81e-4dc5-a043-5e932f50a56a
                © 2021 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 18 December 2020
                : 12 May 2021
                : 04 June 2021
                Categories
                Article

                Genetics
                machine learning,healthcare,support vector machine,ehr,genomics,artificial intelligence
                Genetics
                machine learning, healthcare, support vector machine, ehr, genomics, artificial intelligence

                Comments

                Comment on this article