5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Surfactant-Free Platinum-on-Gold Nanodendrites with Enhanced Catalytic Performance for Oxygen Reduction

      , , , ,
      Angewandte Chemie International Edition
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction.

            Controlling the morphology of Pt nanostructures can provide a great opportunity to improve their catalytic properties and increase their activity on a mass basis. We synthesized Pd-Pt bimetallic nanodendrites consisting of a dense array of Pt branches on a Pd core by reducing K2PtCl4 with L-ascorbic acid in the presence of uniform Pd nanocrystal seeds in an aqueous solution. The Pt branches supported on faceted Pd nanocrystals exhibited relatively large surface areas and particularly active facets toward the oxygen reduction reaction (ORR), the rate-determining step in a proton-exchange membrane fuel cell. The Pd-Pt nanodendrites were two and a half times more active on the basis of equivalent Pt mass for the ORR than the state-of-the-art Pt/C catalyst and five times more active than the first-generation supportless Pt-black catalyst.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters.

              We demonstrated that platinum (Pt) oxygen-reduction fuel-cell electrocatalysts can be stabilized against dissolution under potential cycling regimes (a continuing problem in vehicle applications) by modifying Pt nanoparticles with gold (Au) clusters. This behavior was observed under the oxidizing conditions of the O2 reduction reaction and potential cycling between 0.6 and 1.1 volts in over 30,000 cycles. There were insignificant changes in the activity and surface area of Au-modified Pt over the course of cycling, in contrast to sizable losses observed with the pure Pt catalyst under the same conditions. In situ x-ray absorption near-edge spectroscopy and voltammetry data suggest that the Au clusters confer stability by raising the Pt oxidation potential.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley-Blackwell
                14337851
                January 17 2011
                January 17 2011
                : 50
                : 3
                : 745-748
                Article
                10.1002/anie.201005775
                3c02b37b-55ba-4d4c-9130-a9367120a56d
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article